Skip to main content
Log in

Response Surface Methodology Optimization of Melanin Production by Streptomyces cyaneus and Synthesis of Copper Oxide Nanoparticles Using Gamma Radiation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

An Erratum to this article was published on 28 August 2017

This article has been updated

Abstract

Melanin pigment is witnessed to be widely used in medicine, food, cosmetic preparations with strong hydrophobicity. Streptomyces cyaneus is utilized for the synthesis of melanin by optimizing culture conditions through screening of critical factors, by Response Surface Methodology as Plackett–Burman design (P-BD), while further statistical optimization was applied using Central Composite Design (CCD) for maximizing yield. Moreover, the impacts of gamma radiation and alternative frugal l-tyrosine, natural sources were studied as it predicted for remarkable rising in the pigment concentration. Herein unprecedented achievement was realized for melanin pigment production, (9.898 mg/ml) was obtaining by optimized culture condition. Also, 2.0% fava bean’s seed peel maximized melanin (9.953 mg/ml) and hence super-yield (11.113 mg/ml) was produced by a stimulus from gamma irradiation (2.5 kGy). The extracted melanin was confirmed chemically, UV–Vis, and FT-IR analysis. Copper oxide nanoparticles (CuONPs) were synthesized by radiolytic reactions of gamma radiation (30.0 kGy) in the presence of melanin as a capping agent. CuONPs were characterized by UV–Vis, DLS, XRD, and FT-IR. TEM analysis revealed the morphology of monodispersed CuONPs with a mean diameter 29.82 nm. CuONPs exhibited excellent antimicrobial activity against food born Gram-positive, Gram-negative bacteria, and fungi; they can find potential applications for the food packaging approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig: 4
Fig: 5

Similar content being viewed by others

Change history

  • 28 August 2017

    An erratum to this article has been published.

References

  1. J. Kryściak (1985). Folia Biologica 33, (3–4), 195.

    Google Scholar 

  2. M. Ye, et al. (2011). Int. J. Basic Appl. Sci. 11, 51–58.

    Google Scholar 

  3. A. A. Bell and M. H. Wheeler (1986). Annu. Rev. Phytopathol. 24, (1), 411–451.

    Article  CAS  Google Scholar 

  4. Dastager, S., et al.(2006). Afr. J. Biotechnol 5 (11).

  5. K. F. Chater (1993). Annu. Rev. Microbiol. 47, (1), 685–711.

    Article  CAS  Google Scholar 

  6. M. T. Shaaban, S. M. M. El-Sabbagh, and A. Alam (2013). Life Sci. J. 10, (1), 1437–1448.

    Google Scholar 

  7. J. R. Mencher and A. Heim (1962). Microbiology 28, (4), 665–670.

    CAS  Google Scholar 

  8. R. Krishnaveni, et al. (2009). Curr. Microbiol. 58, (2), 122–128.

    Article  CAS  Google Scholar 

  9. T. Koyanagi, et al. (2005). J. Biotechnol. 115, (3), 303–306.

    Article  CAS  Google Scholar 

  10. S. Ali and I. Haq (2010). BMC Biotechnol. 10, (1), 1.

    Article  Google Scholar 

  11. S. T. Gurme, et al. (2014). Nat. Prod. Bioprospecting 4, (3), 141–147.

    Article  CAS  Google Scholar 

  12. R. Etefagh, E. Azhir, and N. Shahtahmasebi (2013). Sci. Iran. 20, (3), 1055–1058.

    Google Scholar 

  13. A. Llorens, et al. (2012). Trends Food Sci. Technol. 24, (1), 19–29.

    Article  CAS  Google Scholar 

  14. S. A. Ibrahim, H. Yang, and C. W. Seo (2008). Food Chem. 109, (1), 137–143.

    Article  CAS  Google Scholar 

  15. R. Tilaki and S. Mahdavi (2007). Appl. Phys. A 88, (2), 415–419.

    Article  CAS  Google Scholar 

  16. G. Mary, S. Bajpai, and N. Chand (2009). J Appl. Polym. Sci. 113, (2), 757–766.

    Article  CAS  Google Scholar 

  17. A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (11), 1341.

    Article  Google Scholar 

  18. A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (21), 2525.

    Article  Google Scholar 

  19. T. Pridham and D. Gottlieb (1948). J. Bacteriol. 56, (1), 107.

    CAS  Google Scholar 

  20. H. Tresner and F. Danga (1958). J bacteriology 76, (3), 239.

    CAS  Google Scholar 

  21. E. t. Shirling, . and D. Gottlieb (1966). Int. J. Syst. Evolut. Microbiol. 16(3): 313.

  22. C. Kandaswami and C. Vaidyanathan (1973). J. Biol. Chem 248, 4035.

    CAS  Google Scholar 

  23. V. Babitskaia, et al. (1999). Prikladnaia biokhimiia i mikrobiologiia 36, (2), 153–159.

    Google Scholar 

  24. L. E. Arnow (1937). J. Biol. Chem. 118, (2), 531–537.

    CAS  Google Scholar 

  25. Haaland, P.D., Experimental design in biotechnology. CRC press, Boca Raton, 1989 105.

  26. R. L. Plackett and J. P. Burman (1946). Biometrika 33, (4), 305–325.

    Article  Google Scholar 

  27. G. E. Box and K. Wilson (1951). J. R. Stat. Soc. Ser. B (Methodological) 13, (1), 1–45.

    Google Scholar 

  28. G.E.Box and J.S. Hunter (1957). Ann. Math. Statistics 195.

  29. A. K. Pal, D. U. Gajjar, and A. R. Vasavada (2014). Med. Mycol. 52, (1), 10–18.

    CAS  Google Scholar 

  30. Thomas, M., Melanins, in Modern Methods of Plant Analysis/Moderne Methoden der Pflanzenanalyse. 1955, Springer, Berlin. p. 661-675.

  31. G. Gadd (1982). Trans. British Mycol. Soc. 78, (1), 115–122.

    Article  CAS  Google Scholar 

  32. A. El-Batal, H. Abd-Algawad, and A. Noha (2012). World Appl. Sci. J. 19, (1), 1–11.

    CAS  Google Scholar 

  33. A. I. El-Batal, A.-A. M. Hashem, and N. M. Abdelbaky (2013). SpringerPlus 2, (1), 1.

    Article  Google Scholar 

  34. R. Coelho and L. Linhares (1993). Biol. Fertil. Soils 15, (3), 220–224.

    Article  CAS  Google Scholar 

  35. J. Ravishankar, V. Muruganandam, and T. Suryanarayanan (1995). Botanica Marina 38, (1–6), 413–416.

    CAS  Google Scholar 

  36. G. Arun, et al. (2014). Indian J. Adv. Plant Res. 1, (5), 55.

    CAS  Google Scholar 

  37. W. Yuan, S. H. Burleigh, and J. O. Dawson (2007). Physiologia plantarum 131, (2), 180–190.

    CAS  Google Scholar 

  38. A. Zerrad, et al. (2014). J. Biotechnol. Lett. 5, (1), 87–94.

    Google Scholar 

  39. Ahmed I. El-Batal and M.S.S.A. Tamie, Optimization of melanin production by Aspergillus oryzae and incorporation into silver nanoparticles. Der Pharmacia Lettre, 2016. 8(2): p. 315-333.

  40. Y. Lingappa, A. S. Sussman, and I. A. Bernstein (1963). Mycopathologia et Mycologia applicata 20, (1–2), 109–128.

    Article  CAS  Google Scholar 

  41. D. Ellis and D. Griffiths (1974). Can. J. Microbiol. 20, (10), 1379–1386.

    Article  CAS  Google Scholar 

  42. V. Vasanthabharathi, R. Lakshminarayanan, and S. Jayalakshmi (2011). Afr. J. Biotechnol. 10, (54), 11224.

    Article  CAS  Google Scholar 

  43. C. Popa and G. Bahrim (2011). Innov. Romanian Food Biotechnol. 8, 1.

    CAS  Google Scholar 

  44. M. V. Martinez and J. R. Whitaker (1995). Trends Food Sci. Technol. 6, (6), 195–200.

    Article  CAS  Google Scholar 

  45. A. M. Amal, et al. (2011). Res. J. Chem. Sci. 1, (5), 22–28.

    CAS  Google Scholar 

  46. I. Ulukus (1984). J. Turk. Phytopathol. 13, (2), 53–61.

    CAS  Google Scholar 

  47. X. Yu, et al. (1997). Appl. Microbiol. Biotechnol. 47, (3), 301–305.

    Article  CAS  Google Scholar 

  48. Starita, A., S. LaManna, and D. Majidi (2000). Adv. Med. signal Inf. Process.

  49. S. Sajjan, et al. (2010). GSK. J Microbiol. Biotechnol. 20, (11), 1513–1520.

    Article  CAS  Google Scholar 

  50. E. Harki, T. Talou, and R. Dargent (1997). Food Chem. 58, (1), 69–73.

    Article  CAS  Google Scholar 

  51. M. Saastamoinen M. Eurola, and V. Hietaniemi (2013). J Agric. Sci. Technol. B 3(2B): p. 92.

  52. A. El-Batal and A. Shihab (1999). Acta Microbiol. Polonica 49, (1), 51–61.

    Google Scholar 

  53. A. El-Batal and H. A. Karem (2001). Food. Res. Int. 34, (8), 715–720.

    Article  CAS  Google Scholar 

  54. M. S. Awan, et al. (2011). Mol. Biol. Rep. 38, (2), 1367–1374.

    Article  Google Scholar 

  55. A. El-Batal, E. Osman, and I. Shaima (2013). J. Chem. Pharm. Res. 5, 336–347.

    CAS  Google Scholar 

  56. A. El-Batal et al., Egypt. J. Med. Microbiol, (EJMM), 2015. 24(3).

  57. L. Alrehaily, et al. (2013). Phys. Chem. Chem. Phys 15, (3), 1014–1024.

    Article  CAS  Google Scholar 

  58. A. P. Murphy, et al. (1989). Environ. sci. Technol. 23, (2), 166–169.

    Article  CAS  Google Scholar 

  59. A. El-Batal and A. T. Monna (2015). J. Chem. Phar. Res. 7, (7), 1020–1036.

    CAS  Google Scholar 

  60. J. P. Ruparelia, et al. (2008). Acta. Biomater. 4, (3), 707–716.

    Article  CAS  Google Scholar 

  61. P. Kanmani and J.-W. Rhim (2014). Carbohydr. Polym. 106, 190–199.

    Article  CAS  Google Scholar 

  62. A. Llorens, et al. (2012). Int. J. Food Microbiol. 158, (2), 113–119.

    Article  CAS  Google Scholar 

  63. D. Longano, et al. (2012). Anal. Bioanal. Chem 403, (4), 1179–1186.

    Article  CAS  Google Scholar 

  64. M. Ahamed, et al. (2014). J. Nanomater. 2014, 17.

    Article  Google Scholar 

  65. A. Azam, et al. (2012). Int. J. Nanomed 7, 3527–3535.

    Article  CAS  Google Scholar 

  66. S. V. P. Ramaswamy, S. Narendhran, and R. Sivaraj (2016). Bull. Mater. Sci. 39, (2), 361–364.

    Article  CAS  Google Scholar 

  67. P. Kanhed, et al. (2014). Mater. Lett. 115, 13–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed Ibrahim El-Batal), Drug Microbiology Lab, Drug Radiation Research Department, NCRRT, Cairo, Egypt, for financing and supporting this study under the project “Neutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Kerolos Mousa Agaypi and Ahmed Abdel Zaher Asker for their invaluable advice during this study.

Author Contribution

All authors conceived of the study, wrote the manuscript, designed and performed the experiments, analyzed and interpreted the data, supervised the research and interpreted the data. Also, all authors read, revised and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ibrahim El-Batal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10876-017-1273-2.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Batal, A.I., El-Sayyad, G.S., El-Ghamery, A. et al. Response Surface Methodology Optimization of Melanin Production by Streptomyces cyaneus and Synthesis of Copper Oxide Nanoparticles Using Gamma Radiation. J Clust Sci 28, 1083–1112 (2017). https://doi.org/10.1007/s10876-016-1101-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1101-0

Keywords

Navigation