Skip to main content
Log in

Synthesis and Characterization of Carbon-Stabilized Magnesium Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Magnesium nanopowder has attracted many interests in the recent years, which has a very difficult and costly synthesis process because of its high activity. In this work, magnesium nanoparticles stabilized with amorphous carbon (Mg–C nanoparticles) were synthesized by submerged arc discharge technique in kerosene. The arc discharge was generated between two electrodes of magnesium at the arc current of 1 A and arc voltage of 50 V. Mg–C nanoparticles were characterized by various techniques. Dynamic light scattering result indicated that size of magnesium nanoparticles is about 35 nm. X-ray diffraction showed that the produced sample consisted of hexagonal magnesium and amorphous carbon and there was no presence of magnesium oxides in the pattern. Field emission scanning electron microscopy and transmission electron microscopy results illustrated that the sample has morphology of agglomerated nanospheres. Energy dispersive X-ray spectroscopy demonstrated formation of 57 percent magnesium and 43 percent carbon. Differential scanning calorimetry analysis showed that the amorphous carbon increased ignition temperature of nanoparticles by 180 °C compared to pure magnesium micron-sized powder. Therefore, Mg–C nanoparticles can have many applications in different fields similar to magnesium nanopowders. However, by producing Mg–C nanoparticles, there is no need for vacuum chamber or inert gases during production and after that, since amorphous carbon protects magnesium nanoparticles from oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Meirong, L. Yanyan, C. Shumin, and Z. Zhijun (2010). Henan Sci. 7, 008.

    Google Scholar 

  2. W. Liu and K. Aguey-Zinsou (2014). J. Mater. Chem. A 2, 9718.

    Article  CAS  Google Scholar 

  3. I. Jain, C. Lal, and A. Jain (2010). Int. J. Hydrog. Energy 35, 5133.

    Article  CAS  Google Scholar 

  4. L. Pasquini, M. Brighi, A. Montone, M. Antisari, B. Dam, V. Palmisano, and E. Bonetti (2012). IOP Conf. Ser.: Mater. Sci. Eng. 38, 012001.

    Article  Google Scholar 

  5. V. Vons, A. Anastasopol, W. Legerstee, F. Mulder, S. Eijt, and A. Schmidt-Ott (2011). Acta Mater. 59, 3070.

    Article  CAS  Google Scholar 

  6. V. Sundaram, K. Logan, and R. Speyer (1997). J. Mater. Res. 12, 2657.

    Article  CAS  Google Scholar 

  7. S. Pourmortazavi, S. Hajimirsadeghi, I. Kohsari, M. Fathollahi, and S. Hosseini (2008). Fuel 87, 244.

    Article  CAS  Google Scholar 

  8. L. W. F. Van (1950). Magnesium-Containing incendiary Composition and Process of Producing Same. U.S. Patent 2,530,493, Issued November 21, 1950.

  9. M. Wilson (2011). Enterp. Soc. 12, 10.

    Google Scholar 

  10. C. Zhu, H. Wang, and L. Min (2013). J. Energ. Mater. 32, 219.

    Article  Google Scholar 

  11. E. Shafirovich, A. Shiriaev, and U. Goldshleger (1993). J. Propuls. Power 9, 197.

    Article  CAS  Google Scholar 

  12. T. F. Miller, J. D. Herr (2004). Green Rocket Propulsion by Reaction of Al and mg Powders and Water. AIAA Paper 4037. 2004.

  13. K. Kuo, G. Risha, B. Evans, and E. Boyer (2003). MRS Proc. 800, AA1.

    Article  Google Scholar 

  14. J. He, L. Pan, N. Yuan, X. Wen, X. Li (2004). Reduction Of Tantalum And/Or Niobium Oxides With Magnesium, Calcium, Strontium, Barium Or Cerium Halides. U.S. Patent 6,786,951, Issued September 7, 2004.

  15. H. Yang and P. McCormick (1993). J. Mater. Sci. Lett. 12, 1088.

    Article  CAS  Google Scholar 

  16. K. V. Logan. Reduction of Titanium Dioxide and Boron Oxide with Magnesium by Ignition Followed by Rapid Cooling. U.S. Patent 4,888,166, Issued December 19, 1989.

  17. C. Goh, J. Wei, L. Lee, and M. Gupta (2005). Nanotechnology 17, 7.

    Article  Google Scholar 

  18. D. Lee, B. Suh, B. Kim, J. Lee, and C. Lee (1997). Mater. Sci. Technol. 13, 590.

    Article  CAS  Google Scholar 

  19. K. Kondoh, T. Serikawa, K. Kawabata, and T. Yamaguchi (2007). Scr. Mater. 57, 489.

    Article  CAS  Google Scholar 

  20. A. Ingason and S. Olafsson (2006). Thin Solid Films 515, 708.

    Article  CAS  Google Scholar 

  21. Y. Huang, G. Risha, V. Yang, and R. Yetter (2009). Combust. Flame 156, 5.

    Article  CAS  Google Scholar 

  22. I. Haas and A. Gedanken (2008). Chem. Commun. 15, 1795.

    Article  Google Scholar 

  23. B. Kooi, G. Palasantzas, and J. De Hosson (2006). Appl. Phys. Lett. 89, 161914.

    Article  Google Scholar 

  24. X. Zhang, R. Yang, J. Yang, W. Zhao, J. Zheng, W. Tian, and X. Li (2011). Int. J. Hydrog. Energy 36, 4967.

    Article  CAS  Google Scholar 

  25. P. Jongh, R. Wagemans, T. Eggenhuisen, B. Dauvillier, P. Radstake, J. Meeldijk, J. Geus, and K. Jong (2007). Chem. Mater. 19, 6052.

    Article  Google Scholar 

  26. J. van Ommen, C. Yurteri, N. Ellis, and E. Kelder (2010). Particuology 8, 572.

    Article  Google Scholar 

  27. M. Song, M. Chen, and Z. Zhang (2008). Mater. Charact. 59, 514.

    Article  CAS  Google Scholar 

  28. S. Zhao, R. Hong, Z. Luo, H. Lu, and B. Yan (2011). J. Nanomater. 2011, 1.

    Google Scholar 

  29. C. Liu, H. Cong, F. Li, P. Tan, H. Cheng, K. Lu, and B. Zhou (1999). Carbon 37, 1865.

    Article  CAS  Google Scholar 

  30. M. Mohammad, A. Moosa, J. Potgieter, and M. Ismael (2013). ISRN Nanomater. 2013, 1.

    Article  Google Scholar 

  31. A. Ashkarran, A. Iraji zad, S. Mahdavi, and M. Ahadian (2010). Appl. Phys. A 100, 1097.

    Article  CAS  Google Scholar 

  32. A. Ashkarran, A. Iraji zad, M. Ahadian, and A. S. Mahdavi (2008). Nanotechnology 19, 195709.

    Article  CAS  Google Scholar 

  33. A. Ashkarran, A. Iraji zad, M. Ahadian, and M. Hormozi Nezhad (2009). Eur. Phys. J. Appl. Phys. 48, 10601.

    Article  Google Scholar 

  34. A. Ashkarran, A. Iraji zad, S. Mahdavi, M. Ahadian, and M. Hormozi Nezhad (2009). Appl. Phys. A 96, 423.

    Article  CAS  Google Scholar 

  35. A. Ashkarran, M. Kavianipour, S. Aghigh, S. Ahmadi Afshar, S. Saviz, and A. Iraji Zad (2010). J. Clust. Sci. 21, 753.

    Article  CAS  Google Scholar 

  36. L. Cizaire, B. Vacher, T. Le Mogne, J. Martin, L. Rapoport, A. Margolin, and R. Tenne (2002). Surf. Coat. Technol. 160, 282.

    Article  CAS  Google Scholar 

  37. W. Yao, S. Yu, Y. Zhou, J. Jiang, Q. Wu, L. Zhang, and J. Jiang (2005). J. Phys. Chem. B 109, 14011.

    Article  CAS  Google Scholar 

  38. N. Mohd Abbas, D. Solomon, and M. Fuad Bahari (2007). Int. J. Mach. Tool Manuf. 47, 1214.

    Article  Google Scholar 

  39. K. Ho and S. Newman (2003). Int. J. Mach. Tool Manuf. 43, 1287.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Department of Materials Science and Engineering, Sharif University of Technology, for providing instrumental and laboratory facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Safaei.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, S., Asgari, F., Arzi, M. et al. Synthesis and Characterization of Carbon-Stabilized Magnesium Nanoparticles. J Clust Sci 28, 881–889 (2017). https://doi.org/10.1007/s10876-016-1077-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1077-9

Keywords

Navigation