Skip to main content
Log in

Ligand-Assisted Conformation of Three Interesting Ni–M (M = Ag, Cu) Heterobimetallic Coordination Polymers: Syntheses, Structures, Thermal and Luminescence Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Three new heterobimetallic coordination polymers (CPs), {[Ni(4-pytpy)2][Ag(CH3CN)(NO3)](NO3)2(H2O)2}n 1 (4-pytpy = 4′-(4-pyridyl)- 2,2′:6′,2′′-terpyridine), {[Ni(4-pytpy)2][Ag2(4,4′-bipy)](NO3)4(DMSO)4}n 2 (4,4′-bipy = 4,4′-bipyridine), and {[Ni(4-pytpy)2][Cu3(SCN)5](CH3CN)(DMF)(H2O)0.5}n 3, were synthesized from metalloligand [Ni(4-pytpy)2]2+ with transition metals and different bridging ligands. All three compounds were characterized by elemental analysis, Fourier-transform infrared spectroscopy, thermal analysis and single-crystal X-ray diffraction analysis. Both CPs 1 and 2 display one-dimensional (1D) chain structures, which are further extended to 3D supramolecular structures through hydrogen bonds. CP-3 features a 2D network, which is constructed from 1D double chain cluster structure {[Cu3(SCN)5]2−}n linked by metalloligands [Ni(4-pytpy)2]2+ and exhibits an unusual (3,3,4)-connected 3-nodal topology. Thermal analysis indicates that the dehydrated structures of 1 and 3 can be stable up to 310 °C. The solid-state luminescence properties of compounds 13 were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Papadakis, E. Riviere, M. Giorgi, H. Jamet, P. Rousselot-Pailley, M. Reglier, A. J. Simaan, and T. Tron (2013). Inorg. Chem. 52, 5824.

    Article  CAS  Google Scholar 

  2. A. Patra, T. K. Sen, A. Ghorai, G. T. Musie, S. K. Mandal, U. Ghosh, and M. Bera (2013). Inorg. Chem. 52, 2880.

    Article  CAS  Google Scholar 

  3. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp (2009). Chem. Soc. Rev. 38, 1450.

    Article  CAS  Google Scholar 

  4. S. Kitagawa, R. Kitaura, and S. Noro (2004). Angew. Chem. Int. Ed. 43, 2334.

    Article  CAS  Google Scholar 

  5. J. J. Perry, J. A. Perman, and M. J. Zaworotko (2009). Chem. Soc. Rev. 38, 1400.

    Article  CAS  Google Scholar 

  6. P. K. Bhaumik, K. Harms, and S. Chattopadhyay (2013). Inorg. Chim. Acta. 405, 400.

    Article  CAS  Google Scholar 

  7. J. Subrata and C. Shouvik (2014). Polyhedron. 81, 298.

    Article  Google Scholar 

  8. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe, and O. M. Yaghi (2009). Chem. Soc. Rev. 38, 1257.

    Article  CAS  Google Scholar 

  9. M. O’Keeffe (2009). Chem. Soc. Rev. 38, 1215.

    Article  Google Scholar 

  10. Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.

    Article  CAS  Google Scholar 

  11. T. R. Cook, Y. R. Zheng, and P. J. Stang (2013). Chem. Rev. 113, 734.

    Article  CAS  Google Scholar 

  12. Y. Wang, P. Cheng, J. Chen, D. Z. Liao, and S. P. Yan (2007). Inorg. Chem. 46, 4530.

    Article  CAS  Google Scholar 

  13. A. J. Tasiopoulos, T. A. O’Brien, K. A. Abboud, and G. Christou (2004). Angew. Chem. Int. Ed. 43, 345.

    Article  CAS  Google Scholar 

  14. S. R. Halper, L. Do, J. R. Stork, and S. M. Cohen (2006). J. Am. Chem. Soc. 128, 15255.

    Article  CAS  Google Scholar 

  15. C. V. K. Harma, G. A. Broker, J. G. Huddleston, J. W. Baldwin, R. M. Metzger, and R. D. Rogers (1999). J. Am. Chem. Soc. 121, 1137.

    Article  Google Scholar 

  16. X. M. Zhang (2005). Coord. Chem. Rev. 249, 1201.

    Article  CAS  Google Scholar 

  17. X. F. Huang, Y. M. Song, Q. Wu, Q. Ye, X. B. Chen, R. G. Xiong, and X. Z. You (2005). Inorg. Chem. Commun. 8, 58.

    Article  CAS  Google Scholar 

  18. W. H. Zhang, Y. L. Song, Z. G. Ren, H. X. Li, L. L. Li, Y. Zhang, and J. P. Lang (2007). Inorg. Chem. 46, 16.

    Google Scholar 

  19. J. Qian, H. J. Zhao, H. Y. Wei, J. H. Li, J. F. Zhang, H. Yoshikawa, K. Awaga, and C. Zhang (2011). CrystEngComm. 13, 517.

    Article  CAS  Google Scholar 

  20. H. Zhao, Z. R. Qu, H. Y. Ye, and R. G. Xiong (2008). Chem. Soc. Rev. 37, 84.

    Article  Google Scholar 

  21. R. L. LaDuca (2009). Coord. Chem. Rev. 253, 1759.

    Article  CAS  Google Scholar 

  22. L. P. Zhang, J. F. Ma, J. Yang, Y. Y. Pang, and J. C. Ma (2010). Inorg. Chem. 49, 1535.

    Article  CAS  Google Scholar 

  23. E. C. Constable, E. L. Dunphy, C. E. Housecroft, W. Kylberg, M. Neuburger, S. Schaffner, E. R. Schofield, and C. B. Smith (2006). Chem. Eur. J. 12, 4600.

    Article  CAS  Google Scholar 

  24. L. Hou, D. Li, W. J. Shi, Y. G. Yin, and S. W. Ng (2005). Inorg. Chem. 44, 7825.

    Article  CAS  Google Scholar 

  25. N. Noshiranzadeh, A. Ramazani, A. Morsali, A. D. Hunter, and M. Zeller (2007). Inorg. Chim. Acta 360, 3603.

    Article  CAS  Google Scholar 

  26. N. Masuhara, S. Hayami, N. Motokawa, A. Shuto, and Y. Maeda (2007). Chem. Lett. 36, 90.

    Article  CAS  Google Scholar 

  27. H. Feng, X. P. Zhou, T. Wu, D. Li, Y. G. Yin, and S. W. Ng (2006). Inorg. Chim. Acta 359, 4027.

    Article  CAS  Google Scholar 

  28. S. S. Zhang, S. Z. Zhan, M. Li, R. Peng, and D. Li (2007). Inorg. Chem. 46, 4365.

    Article  CAS  Google Scholar 

  29. J. E. Beves, E. C. Constable, C. E. Housecroft, C. J. Kepert, and D. J. Price (2007). CrystEngComm. 9, 456.

    Article  CAS  Google Scholar 

  30. J. E. Beves, E. C. Constable, S. Decurtins, E. L. Dunphy, C. E. Housecroft, T. D. Keene, M. Neuburger, S. Schaffner, and J. A. Zampese (2009). CrystEngComm. 11, 2406.

    Article  CAS  Google Scholar 

  31. J. E. Beves, E. C. Constable, C. E. Housecroft, M. Neuburger, and S. Schaffner (2008). CrystEngComm. 10, 344.

    Article  CAS  Google Scholar 

  32. J. Yoshida, S. Nishikiori, and R. Kuroda (2009). Bull. Chem. Soc. Jpn. 82, 1377.

    Article  CAS  Google Scholar 

  33. A. Morsali, H. H. Monfared, and A. Morsali (2009). Inorg. Chim. Acta. 362, 3427.

    Article  CAS  Google Scholar 

  34. F. Krrohnke (1976). Synthesis. p.1.

  35. Y. Gong, J. Li, J. B. Qin, T. Wu, R. Cao, and J. H. Li (2011). Cryst. Growth Des. 11, 1662.

    Article  CAS  Google Scholar 

  36. L. Croitor, E. B. Coropceanu, D. Chisca, S. G. Baca, J. V. Leusen, P. Kögerler, P. Bourosh, V. C. Kravtsov, D. Grabco, C. Pyrtsac, and M. S. Fonari (2014). Cryst. Growth Des. 14, 3015.

    Article  CAS  Google Scholar 

  37. J. E. Beves, D. J. Bray, J. K. Clegg, E. C. Constable, C. E. Housecroft, K. A. Jolliffe, C. J. Kepert, L. F. Lindoy, M. Neuburger, D. J. Price, S. Schaffner, and F. Schaper (2008). Inorg. Chim. Acta. 361, 2582.

    Article  CAS  Google Scholar 

  38. G. M. Sheldrick (1997). SHELXTL, version 5.1; Bruker Analytical X-ray Systems Inc., Madison.

  39. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.

    Article  CAS  Google Scholar 

  40. S. Halder, S. Dey, C. Rizzoli, and P. Roy (2014). Polyhedron. 78, 85.

    Article  CAS  Google Scholar 

  41. A. Morsali, H. H. Monfared, and A. Morsali (2009). J. Mol. Struct. 938, 10.

    Article  CAS  Google Scholar 

  42. J. F. Zhang, S. C. Meng, Y. L. Song, H. J. Zhao, J. H. Li, G. J. Qu, L. Sun, M. G. Humphrey, and C. Zhang (2010). Chem. Eur. J. 16, 13946.

    Article  CAS  Google Scholar 

  43. C. Zhang, Y. L. Song, and X. Wang (2007). Coord. Chem. Rev. 251, 111.

    Article  CAS  Google Scholar 

  44. F. Marandi, A. Marandi, I. Pantenburg, and G. Meyer (2012). Z. Naturforsch. 67, 465.

    Article  CAS  Google Scholar 

  45. M. Felloni, A. J. Blake, P. Hubberstey, C. Wilson, and M. Schröder (2009). Cryst. Growth Des. 9, 4685.

    Article  CAS  Google Scholar 

  46. S. A. da Silva, C. Q. F. Leite, F. R. Pavan, N. Masciocchi, and A. Cuin (2014). Polyhedron. 79, 170.

    Article  Google Scholar 

  47. T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, and J. Kim (2008). Angew. Chem. Int. Ed. 47, 685.

    Article  CAS  Google Scholar 

  48. D. B. Dang, M. M. Li, Y. Bai, and R. Q. Ning (2012). Synthetic Met. 162, 2075.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grants 50925207, 51172100, and 51432006), the Ministry of Science and Technology of China for the International Science Linkages Program (Grant 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (Grant IRT13R24), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (Grant B13025), and 100 Talents Program of CAS are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Qian or Chi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Wei, H., Qian, J. et al. Ligand-Assisted Conformation of Three Interesting Ni–M (M = Ag, Cu) Heterobimetallic Coordination Polymers: Syntheses, Structures, Thermal and Luminescence Properties. J Clust Sci 27, 1655–1669 (2016). https://doi.org/10.1007/s10876-016-1021-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1021-z

Keywords

Navigation