Skip to main content
Log in

Synthesis and Characterization of Yttria-Stabilized Zirconia (YSZ) Nano-Clusters for Thermal Barrier Coatings (TBCs) Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Yttria-stabilized zirconia (YSZ) nano-clusters were synthesized by a sol–gel process. The aim was to produce YSZ powders in order to prepare thick coatings for thermal barrier to be applied on gas turbine engine components. Yttrium nitrate hexahydrate and zirconium oxy-chloride octahydrate were used as a source of zirconium, citric acid was taken as a chelating agent, and ethylene glycol was used as a polysterification agent. The synthesized powders were characterized by X-ray diffraction, transmission electron microscopy, thermo-gravimetric analysis and differential scanning calorimetry, and Raman spectroscopy. Furthermore, parameters were critically analyzed in order to synthesize non-transformable (t′) tetragonal crystal structure, which is the best zirconia phase for high temperature thermal barrier coatings applications. In this regard, tetragonal YSZ nano-clusters were heated in an alumina crucible at a temperature of 1200 °C for 100 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Kumari, W. Li, J. Xu, R. Leblanc, D. Wang, Y. Li, H. Guo, and J. Zhang (2009). Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth Des. 9, (9), 3874–3880.

    Article  CAS  Google Scholar 

  2. I. Freris, P. Riello, F. Enrichi, D. Cristofori, and A. Benedetti (2011). Opt. Mater. 33, 1745–1752. doi:10.1016/j.optmat.2011.06.010.

    Article  CAS  Google Scholar 

  3. J. He, J. Chen, L. Ren, Y. Wang, C. Teng, M. Hong, et al. (2014). ACS Appl. Mater. Interfaces 6, 2718–2725. doi:10.1021/am405202d.

    Article  CAS  Google Scholar 

  4. H. Uchiyama, K. Takagi, and H. Kozuka (2012). Colloids Surf. A Physicochem. Eng. Asp. 403, 121–128. doi:10.1016/j.colsurfa.2012.03.065.

    Article  CAS  Google Scholar 

  5. D. R. Clarke and C. G. Levi (2003). Annu. Rev. Mater. Res. 33, 383–417. doi:10.1146/annurev.matsci.33.011403.113718.

    Article  CAS  Google Scholar 

  6. T. Koch and P. Ziemann (1996). Appl. Surf. Sci. 99, 51–57. doi:10.1016/0169-4332(95)00512-9.

    Article  CAS  Google Scholar 

  7. J. H. Shim, C. Chao, H. Huang, and F. B. Prinz (2007). Chem. Mater. 19, 3850–3854. doi:10.1021/cm070913t.

    Article  CAS  Google Scholar 

  8. T. Miller and V. Grassian (1995). J. Am. Chem. Soc. 117, 10969–10975. doi:10.1021/ja00149a020.

    Article  CAS  Google Scholar 

  9. Y. Li, D. He, Z. Cheng, C. Su, J. Li, and Q. Zhu (2001). J. Mol. Catal. A Chem. 175, 267–275. doi:10.1016/S1381-1169(01)00233-3.

    Article  CAS  Google Scholar 

  10. D. Chen, L. Cao, F. Huang, P. Imperia, Y.-B. Cheng, and R. A. Caruso (2010). J. Am. Chem. Soc. 132, 4438–4444. doi:10.1021/ja100040p.

    Article  CAS  Google Scholar 

  11. D. Lu, J. Wang, L. Wang, D. Du, C. Timchalk, R. Barry, et al. (2011). Adv. Funct. Mater. 21, 4371–4378. doi:10.1002/adfm.201100616.

    Article  CAS  Google Scholar 

  12. M. Zhou and A. Ahmad (2006). Mater. Res. Bull. 41, 690–696. doi:10.1016/j.materresbull.2005.10.018.

    Article  CAS  Google Scholar 

  13. A. Subramanian, P. W. Carr, and C. V. McNeff (2000). J. Chromatogr. A 890, 15–23. doi:10.1016/S0021-9673(00)00289-2.

    Article  CAS  Google Scholar 

  14. B. Yan, C. McNeff, and F. Chen (2001). J. Am. Ceram. Soc. 27, 1721–1727. doi:10.1111/j.1151-2916.2001.tb00905.x.

    Google Scholar 

  15. B. Yan, C. V. McNeff, P. W. Carr, and A. V. McCormick (2005). J. Am. Ceram. Soc. 88, 707–713. doi:10.1111/j.1551-2916.2005.00133.x.

    Article  CAS  Google Scholar 

  16. A. Pattanayak and A. Subramanian (2009). Powder Technol. 192, 359–366. doi:10.1016/j.powtec.2009.01.023.

    Article  CAS  Google Scholar 

  17. A. Pattanayak and A. Subramanian (2011). Int. J. Appl. Ceram. Technol. 8, 94–111. doi:10.1111/j.1744-7402.2009.02410.x.

    Article  CAS  Google Scholar 

  18. H. Liu, H. Jazi, M. Bussmann, and J. Mostaghimi (2009). Experiments and modeling of rapid solidification of plasma-sprayed yttria-stabilized zirconia. Acta Mater. 57, (20), 6013–6021.

    Article  CAS  Google Scholar 

  19. C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnabé (2008). Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J. Alloys Compd. 452, (2), 377–383.

    Article  CAS  Google Scholar 

  20. G. Stefanic, S. Music, B. Grzeta, S. Popovic, and A. Sekulic (1998). Influence of pH on the stability of low temperature t-ZrO2. J. Phys. Chem. Solids 59, (6), 879–885.

    Article  CAS  Google Scholar 

  21. G. Pacheco and J. Fripiat (2000). Physical chemistry of the thermal transformation of mesoporous and microporous zirconia. J. Phys. Chem. B 104, (50), 11906–11911.

    Article  CAS  Google Scholar 

  22. I. Nettleship and R. Stevens (1987). Tetragonal zirconia polycrystal (TZP)—a review. Int. J. High Technol. Ceram. 3, (1), 1–32.

    Article  CAS  Google Scholar 

  23. E. Subbarao (1981). Ceramic dielectrics for capacitors. Ferro-electrics 35, (1), 143–148.

    Article  CAS  Google Scholar 

  24. H. Scott (1975). Phase relationships in the zirconia-yttria system. J. Mater. Sci. 10, (9), 1527–1535.

    Article  CAS  Google Scholar 

  25. R. Mevrel, C. Rio, M. Poulain, C. Diot, and F. Nardou (1987). Technical Report No. 28/2019M. ONERA.

  26. R. A. Miller, J. L. Smialek, and R. G. Garlick (1981). Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. J. Am. Ceram. Soc. 3, 241.

    CAS  Google Scholar 

  27. R. A. Miller (1997). Thermal barrier coatings for aircraft engines: history and directions. J. Therm. Spray. Technol. 6, (1), 35–42.

    Article  CAS  Google Scholar 

  28. S. Bose High temperature coatings (Butterworth-Heinemann, UK, 2011).

    Google Scholar 

  29. C. Viazzi, F. Ansart, and J. P. Bonino Proceeding of the Poudres et Materiaux ´Frittes 2005 (Cherbourg, France, 2005).

    Google Scholar 

  30. M. Pechini (1967). Patent No. 3,330,697. United States Patent Office.

  31. B. D. Cullity and S. R. Stock Elements of X-ray diffraction, vol. 3 (Prentice Hall Upper Saddle River, NJ, 2001).

    Google Scholar 

  32. R. S. da Silva, M. I. B. Bernardi, and A. C. Hernandes (2007). Synthesis of non-agglomerated Ba0.77Ca0.23TiO3 nanopowders by a modified polymeric precursormethod. J. Sol-Gel Sci. Technol. 42, (2), 173–179.

    Article  Google Scholar 

  33. K. Singh, L. Pathak, and S. Roy (2007). Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process. Ceram. Int. 33, (8), 1463–1468.

    Article  CAS  Google Scholar 

  34. S. Sakka Handbook of sol-gel science and technology. 1. Sol-gel processing, vol. 1 (Springer, New York, 2005).

    Google Scholar 

  35. M. Kakihana and M. Yoshimura (1999). Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull. Chem. Soc. Jpn. 72, (7), 1427–1443.

    Article  CAS  Google Scholar 

  36. Y. Xu, X. Yuan, G. Huang, and H. Long (2005). Polymeric precursor synthesis of Ba2Ti9O20. Mater. Chem. Phys. 90, (2), 333–338.

    Article  CAS  Google Scholar 

  37. G. Socrates and G. Socrates Infrared and Raman characteristic group frequencies: tables and charts (Wiley, Chichester, 2001).

    Google Scholar 

  38. Y. Zhang, A. Li, Z. Yan, G. Xu, C. Liao, and C. Yan (2003). (ZrO2)0.85 (REO1.5)0.15. Res. J. Solid State Chem. 171, (1–2), 434–438.

    Article  CAS  Google Scholar 

  39. C. Laberty-Robert, F. Ansart, C. Deloget, M. Gaudon, and A. Rousset (2001). Powder synthesis of nanocrystalline ZrO2—8 % Y2O3 via a polymerization route. Mater. Res. Bull. 36, (12), 2083–2101.

    Article  CAS  Google Scholar 

  40. Y.-W. Zhang, Z.-G. Yan, F.-H. Liao, C.-S. Liao, and C.-H. Yan (2004). Citrate gel synthesis and characterization of (ZrO2)0.85 (REO1.5)0.15 (RE = Y, Sc) solid solutions. Mater. Res. Bull. 39, (11), 1763–1777.

    Article  CAS  Google Scholar 

  41. D. Thackeray (1974). The Raman spectrum of zirconium dioxide. Spectrochimica Acta A Mol. Spectrosc. 30, (2), 549–550.

    Article  Google Scholar 

  42. C. Li and M. Li (2002). UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J. Raman Spectrosc. 33, (5), 301–308.

    Article  CAS  Google Scholar 

  43. A. Naumenko, N. Berezovska, M. Biliy, and O. Shevchenko (2008). Vibrational analysis and Raman spectra of tetragonal zirconia. Phys. Chem. Solid State 9, (1), 121–125.

    CAS  Google Scholar 

  44. D. Gazzoli, G. Mattei, and M. Valigi (2007). Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure. J. Raman Spectrosc. 38, (7), 824–831.

    Article  CAS  Google Scholar 

  45. C. Perry, D. W. Liu, and R. P. Ingel (1985). Phase characterization of partially stabilized zirconia by Raman spectroscopy. J. Am. Ceram. Soc. 68, (8), C184–C187.

    Article  Google Scholar 

  46. D. J. Kim, H. J. Jung, and I. S. Yang (1993). Raman spectroscopy of tetragonal zirconia solid solutions. J. Am. Ceram. Soc. 76, (8), 2106–2108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (Grant No. К4-2014-081) and experimental support of National University of Science and Technology “MISiS”, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Tailor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tailor, S., Singh, M. & Doub, A.V. Synthesis and Characterization of Yttria-Stabilized Zirconia (YSZ) Nano-Clusters for Thermal Barrier Coatings (TBCs) Applications. J Clust Sci 27, 1097–1107 (2016). https://doi.org/10.1007/s10876-016-1014-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1014-y

Keywords

Navigation