Skip to main content
Log in

Metal-Cation-Directed Assembly of Two M–I (M = Cu, Ag) Clusters: Structures, Thermal Behaviors, Theoretical Studies, and Luminescence Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new M–I (M = Cu, Ag) clusters, {[Ce(DMF)8][Cu8I11]·C2H5OH} n (1) (DMF = dimethylfomamide) and {[Co(DMF)6]4[Ag7I11]2} (2), were synthesized with the direction of solvent-associated metal cations ([Ce(DMF)8]3+ in 1 and [Co(DMF)6]2+ for 2). Clusters 1 and 2 have been well-characterized by elemental analysis, infrared spectroscopy, ultraviolet/visible spectroscopies, single-crystal X-ray diffraction and thermogravimetric analysis. 1 contains the eight-coordinated cations [Ce(DMF)8]3+ and 1D polymeric anionic chain {[Cu8I11]3−} n , which is constructed from [Cu8I11]3− clusters connected with each other through µ 3-I bridges and exhibits an interesting wavy chain structure. Cluster 2 consists of the six-coordinated cations [Co(DMF)6]2+ and the dimeric anionic cluster {[Ag7I11]2}8−, which is fabricated by a pair of heptanuclear butterfly-like clusters connected by two Ag–I bridges. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations at the B3LYP/LanL2DZ*+6-31G* level were performed on clusters 1 and 2 to rationalize their experimental absorption spectra. Solid-state luminescence properties of clusters 1 and 2 have also been investigated at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. T. Meally, K. Mason, P. McArdle, E. K. Brechin, A. G. Ryder, and L. F. Jones (2009). Chem. Commun. 45, 7024.

    Article  Google Scholar 

  2. J. R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H. K. Jeong, P. B. Balbuena, and H. C. Zhou (2011). Coord. Chem. Rev. 255, 1791.

    Article  CAS  Google Scholar 

  3. P. Pachfule, C. Dey, T. Panda, K. Vanka, and R. Banerjee (2010). Cryst. Growth Des. 10, 1351.

    Article  CAS  Google Scholar 

  4. N. C. Kasuga, A. Sugie, and K. Nomiya (2004). Dalton Trans. 21, 3732.

    Article  Google Scholar 

  5. S. Ramachandra, K. C. Schuermann, F. Edafe, P. Belser, C. A. Nijhuis, W. F. Reus, G. M. Whitesides, and L. D. Cola (2011). Inorg. Chem. 50, 1581.

    Article  CAS  Google Scholar 

  6. T. Li, X. H. Huang, Y. F. Zhao, H. H. Li, S. T. Wu, and C. C. Huang (2012). Dalton Trans. 41, 12872.

    Article  CAS  Google Scholar 

  7. Y. Y. Niu, H. W. Hou, and Y. Zhu (2003). J. Cluster Sci. 14, 483.

    Article  CAS  Google Scholar 

  8. M. Fujita, Y. J. Kwon, S. Washizu, and K. Ogura (1994). J. Am. Chem. Soc. 116, 1151.

    Article  CAS  Google Scholar 

  9. S. Zartilas, S. K. Hadjikakou, N. Hadjiliadis, N. Kourkoumelis, L. Kyros, M. Kubicki, M. Baril, I. S. Butler, S. Karkabounas, and J. Balzarini (2009). Inorg. Chim. Acta 362, 1003.

    Article  CAS  Google Scholar 

  10. E. S. Raper (1996). Coord. Chem. Rev. 153, 199.

    Article  CAS  Google Scholar 

  11. W. Q. Kan, B. Liu, J. Yang, Y. Y. Liu, and J. F. Ma (2012). Cryst. Growth Des. 12, 2288.

    Article  CAS  Google Scholar 

  12. H. Y. Bai, J. Yang, B. Liu, J. F. Ma, W. Q. Kan, and Y. Y. Liu (2011). CrystEngComm 13, 5877.

    Article  CAS  Google Scholar 

  13. J. F. Zhang, S. C. Meng, Y. L. Song, H. J. Zhao, J. H. Li, G. J. Qu, L. Sun, M. G. Humphrey, and C. Zhang (2010). Chem. Eur. J. 16, 13946.

    Article  CAS  Google Scholar 

  14. Y. J. Li, C. Latouche, S. Kahlal, J. H. Liao, R. S. Dhayal, J. Y. Saillard, and C. W. Liu (2012). Inorg. Chem. 51, 7439.

    Article  CAS  Google Scholar 

  15. J. H. Liao, C. Latouche, B. Li, S. Kahlal, J. Y. Saillard, and C. W. Liu (2014). Inorg. Chem. 53, 2260.

    Article  CAS  Google Scholar 

  16. R. Peng, M. Li, and D. Li (2010). Coord. Chem. Rev. 254, 1.

    Article  CAS  Google Scholar 

  17. Y. Y. Niu, Y. L. Song, H. G. Zheng, D. L. Long, H. K. Fun, and X. Q. Xin (2001). New. J. Chem. 25, 945.

    Article  CAS  Google Scholar 

  18. J. H. Li, J. F. Zhang, M. G. Humphrey, and C. Zhang (2013). Eur. J. Inorg. Chem. 2013, 328.

    Article  CAS  Google Scholar 

  19. Z. Jing, Z. Jing, S. C. Xiang, Y. F. Zhang, A. Q. Wu, L. Z. Cai, G. Cong, and J. S. Huang (2006). Inorg. Chem. 45, 1972.

    Article  Google Scholar 

  20. S. Mishra, E. Jeanneau, S. Daniele, G. Ledoux, and P. N. Swamy (2008). Inorg. Chem. 47, 9333.

    Article  CAS  Google Scholar 

  21. M. A. Tershansy, A. M. Goforth, J. M. Ellsworth, M. D. Smith, and H. C. Zur Loye (2008). CrystEngComm 10, 833.

    Article  CAS  Google Scholar 

  22. A. M. Goforth, M. A. Tershansy, M. D. Smith, L. Peterson Jr, J. G. Kelley, W. J. I. DeBenedetti, and H. C. Zur Loye (2011). J. Am. Chem. Soc. 133, 603.

    Article  CAS  Google Scholar 

  23. S. Mishra, E. Jeanneau, O. Iasco, G. Ledoux, D. Luneau, and S. Daniele (2012). Eur. J. Inorg. Chem. 16, 2749.

    Article  Google Scholar 

  24. Y. L. Shen, J. L. Lu, C. Y. Tang, W. Fang, Y. Zhang, and D. X. Jia (2014). RSC Adv. 4, 39596.

    Article  CAS  Google Scholar 

  25. X. W. Lei, C. Y. Yue, L. J. Feng, Y. F. Han, R. R. Meng, J. T. Yang, H. Ding, C. S. Gao, and C. Y. Wang (2016). CrystEngComm 18, 427.

    Article  CAS  Google Scholar 

  26. SMART and SAINT (Area Detector Software Package and SAX Area Detector Integration Program (Bruker Analytical X-Ray, Madison, 1997).

    Google Scholar 

  27. G. M. Sheldrick SHELXTL-97 (Program for the Refinement of Crystal Structures) (University of Göttingen, Germany, 1997).

    Google Scholar 

  28. M. J. Frisch Gaussian 09 (Revision A. 02) (Gaussian, Inc., Wallingford, 2009).

    Google Scholar 

  29. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  30. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  31. Y. C. Liang, S. F. Lu, Z. X. Huang, and Q. J. Wu (2002). J. Cluster Sci. 13, 712.

    Article  Google Scholar 

  32. Y. Cao, J. F. Zhang, F. L. Bei, C. Zhang, J. Y. Yang, and Y. L. Song (2007). Inorg. Chem. Commun. 10, 1214.

    Article  CAS  Google Scholar 

  33. S. Mishra, E. Jeanneau, G. Ledoux, and S. Daniele (2012). CrystEngComm 14, 3894.

    Article  CAS  Google Scholar 

  34. W. Fang, C. Y. Tang, R. Y. Chen, D. X. Jia, W. Q. Jiang, and Y. Zhang (2013). Dalton Trans. 42, 15150.

    Article  CAS  Google Scholar 

  35. S. Mishra, E. Jeanneau, G. Ledoux, and S. Daniele (2014). Inorg. Chem. 53, 11721.

    Article  CAS  Google Scholar 

  36. J. E. McGarrah, Y. J. Kim, M. Hissler, and R. Eisenberg (2001). Inorg. Chem. 40, 4510.

    Article  CAS  Google Scholar 

  37. R. H. Wang, L. Han, F. L. Jiang, Y. F. Zhou, D. Q. Yuan, and M. C. Hong (2005). Cryst. Growth Des. 5, 129.

    Article  CAS  Google Scholar 

  38. Z. Li, M. Li, X.-P. Zhou, T. Wu, D. Li, and S. W. Ng (2007). Cryst. Growth Des. 7, 1992.

    Article  CAS  Google Scholar 

  39. M. Knorr, F. Guyon, A. Khatyr, C. Daschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin, and P. D. Harvey (2009). Dalton Trans. 6, 948.

    Article  Google Scholar 

  40. S. Q. Zang, Y. Su, Y. Z. Li, J. G. Lin, X. Y. Duan, Q. J. Meng, and S. Gao (2009). CrystEngComm 11, 122.

    Article  CAS  Google Scholar 

  41. D. P. Jiang, R. X. Yao, F. Li, and X. M. Zhang (2013). Eur. J. Inorg. Chem. 4, 556.

    Article  Google Scholar 

  42. Q. Hou, J. H. Yu, J. N. Xu, Q. F. Yang, and J. Q. Xu (2009). Inorg. Chim. Acta 362, 2802.

    Article  CAS  Google Scholar 

  43. A. H. Chen, S. C. Meng, J. F. Zhang, and C. Zhang (2014). Z. Anorg. Allg. Chem. 640, 974.

    Article  CAS  Google Scholar 

  44. S. Naik, J. T. Mague, and M. S. Balakrishna (2014). Inorg. Chem. 53, 3864.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant Nos.: 50925207, 51172100, and 51432006), the Ministry of Science and Technology of China for the International Science Linkages Program (Grant No.: 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (Grant No.: IRT13R24), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (Grant No.: B13025), and 100 Talents Program of CAS are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Qian or Chi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Wei, H., Li, L. et al. Metal-Cation-Directed Assembly of Two M–I (M = Cu, Ag) Clusters: Structures, Thermal Behaviors, Theoretical Studies, and Luminescence Properties. J Clust Sci 27, 1463–1474 (2016). https://doi.org/10.1007/s10876-016-1012-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1012-0

Keywords

Navigation