Skip to main content
Log in

Biogenic Synthesis and Structural Characterization of Polyshaped Gold Nanoparticles Using Leaf Extract of Swertia chirata Along with Process Optimization by Response Surface Methodology (RSM)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2016

Abstract

Swertia chirata, a critically endangered medicinal plant is explored for its reducing ability to synthesize polyshaped gold nanoparticles (AuNP). Biosynthesized AuNP were characterized by UV–Visible spectroscopy (UV–Vis), transmission electron microscopy (TEM) along with selected area electron diffraction pattern and energy dispersive X-ray, atomic force microscopy, X-ray diffraction (XRD) and Fourier transform-infrared (FTIR) analysis. UV–Vis spectra of the aqueous medium containing AuNP showed a plasmon resonance peak at 540 nm. TEM analysis revealed that the average crystalline size of the particles was 50 nm and they were polyshaped viz. spherical, hexagonal and nanotriangles. XRD analysis confirmed the crystalline nature. The possible mechanism of biosynthesis was predicted by FTIR. The process of AuNP biosynthesis was optimized by response surface methodology (RSM) and maximum biosynthesis was achieved under the optimized condition of 17.24 % leaf extract, pH 4.6, gold chloride concentration 4 mM and temperature 53.61 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Noruzi (2015). Bioprocess Biosys. Eng. 38, 1–14.

    Article  CAS  Google Scholar 

  2. X. Wei, M. Luo, W. Li, L. Yang, X. Liang, L. Xu, P. Kong, and H. Liu (2012). Bioresour. Technol. 103, 273–278.

    Article  CAS  Google Scholar 

  3. X. Wei, H. Zhou, L. Xu, M. Luo, and H. Liu (2014). J. Chem. Technol. Biotechnol. 89, 305–311.

    Article  CAS  Google Scholar 

  4. P. Kouvaris, A. Delmitis, V. Zaspalis, D. Papadopoulos, S. A. Tsipas, and N. Michailidis (2012). Mater. Lett. 76, 18–20.

    Article  CAS  Google Scholar 

  5. N. N. Dhanasekar, G. R. Rahul, K. B. Narayanan, G. Raman, and N. Sakthivel (2015). J. Microbiol. Biotechnol. 25, 1129–1135.

    Article  CAS  Google Scholar 

  6. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak (2008). Chem. Soc. Rev. 37, 1896–1908.

    Article  CAS  Google Scholar 

  7. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed (2006). J. Phys. Chem. B 110, 7238–7248.

    Article  CAS  Google Scholar 

  8. X. Huang and M. A. El-Sayed (2010). J. Adv. Res. 1, 13–28.

    Article  Google Scholar 

  9. K. B. Narayanan and N. Sakthivel (2010). Mater. Charact. 61, 1232–1238.

    Article  CAS  Google Scholar 

  10. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello (2008). Adv. Drug Deliv. Rev. 60, 1307–1315.

    Article  CAS  Google Scholar 

  11. E. Boisselier and D. Astruc (2009). Chem. Soc. Rev. 38, 1759–1782.

    Article  CAS  Google Scholar 

  12. V. Armendariz, J.L. Gardea-Torresdey, M. Jose-Yacaman, J. Gonzalez, I. Herrera, and J.G. Parsons (2002). in Proceedings—Waste Research Technology Conference at the Kansas City, Mariott-Country Club Plaza, July 30–Aug 1.

  13. D. Andreeva (2002). Gold Bull. 35, 82–88.

    Article  CAS  Google Scholar 

  14. P. Yanez-Sedeno and J. M. Pingarron (2005). Anal. Bioanal. Chem. 382, 884–886.

    Article  CAS  Google Scholar 

  15. J. Liu and Y. Lu (2004). J. Fluoresc. 14, 343–354.

    Article  CAS  Google Scholar 

  16. R. Groning, J. Breitkreutz, V. Baroth, and R. S. Muller (2001). Pharmazie 56, 790–792.

    CAS  Google Scholar 

  17. D. Tang, R. Yuan, and Y. Chai (2006). Biotechnol. Bioeng. 94, 996–1004.

    Article  CAS  Google Scholar 

  18. Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi, and T. Uruga (2007). J. Biotechnol. 128, 648–653.

    Article  CAS  Google Scholar 

  19. B. Nair and T. Pradeep (2002). Cryst. Growth Des. 2, 293–298.

    Article  CAS  Google Scholar 

  20. S. Iravani (2011). Green Chem. 13, 2638–2650.

    Article  CAS  Google Scholar 

  21. E. O. Nyakundi and M. N. Padmanabhan (2015). Spectrochim. Acta A149, 978–984.

    Article  Google Scholar 

  22. N. E. A. El-Naggar and N. A. Abdelwahed (2014). J. Microbiol. 52, 53–63.

    Article  CAS  Google Scholar 

  23. I. Willner, R. Baron, and B. Willner (2006). Adv. Mater. 18, 1109–1120.

    Article  CAS  Google Scholar 

  24. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interf. Sci. 275, 496–502.

    Article  CAS  Google Scholar 

  25. P. Singh, Y. J. Kim, D. Zhang, and D. C. Yang (2016). Trends Biotechnol.. doi:10.1016/j.tibtech.2016.02.006.

    Google Scholar 

  26. M. Rahimi-Nasrabadi, S. M. Pourmortazavi, Z. Rezvani, K. Adib, and M. R. Ganjali (2015). Mater. Manuf. Process. 30, 34–40.

    Article  CAS  Google Scholar 

  27. V. Anand and V. C. Srivastava (2015). J. Alloy Compd. 636, 288–292.

    Article  CAS  Google Scholar 

  28. M. Rohini, P. Reyes, S. Velumani, M. Latha, I. Becerril-Juarez, and R. Asomoza (2015). Mater. Sci. Semicond. Process. 37, 151.

    Article  CAS  Google Scholar 

  29. N. Saha, A. K. Samanta, S. Chaudhuri, and D. Dutta (2015). Food Sci. Biotechnol. 24, 117–124.

    Article  CAS  Google Scholar 

  30. S. M. Pourmortazavi, M. Taghdiri, V. Makari, and M. Rahimi-Nasrabadi (2015). Spectrochim. Acta A 136, 1249–1254.

    Article  CAS  Google Scholar 

  31. A. Krupa, M. Nithya Deva, C. Evy Alice Abigail, A. Santhosh, N. Grace, and R. Vimala (2016). Ecol. Eng. 87, 168–174.

    Article  Google Scholar 

  32. N. Pant, D. C. Jain, and R. S. Bhakuni (2000). Indian J. Chem. B 39, 565–586.

    Google Scholar 

  33. S. Bhargava, P. S. Rao, P. Bhargava, and S. Shukla (2009). Sci. Pharm. 77, 617–623.

    Article  CAS  Google Scholar 

  34. S. Phoboo, S. Pinto Mda, A. C. Barbosa, D. Sarkar, P. C. Bhowmik, P. K. Jha, and K. Shetty (2013). Phytother. Res. 27, 227–235.

    Article  CAS  Google Scholar 

  35. T. Murashige and F. Skoog (1962). Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  36. C. Krishnaraj, R. Ramachandran, K. Mohan, and P. T. Kalaichelvan (2012). Spectrochim. Acta A93, 95–99.

    Article  Google Scholar 

  37. G. Mie (1908). Ann. Phys. 25, 377–445.

    Article  CAS  Google Scholar 

  38. G. Goswami, S. Chakraborty, S. Chaudhuri, and D. Dutta (2012). Bioprocess. Biosyst. Eng. 35, 1375–1388.

    Article  CAS  Google Scholar 

  39. P. Mulvaney (1996). Langmuir 12, 788–800.

    Article  CAS  Google Scholar 

  40. K. U. Suganya, K. Govindaraju, V. G. Kumar, T. S. Dhas, V. Karthick, G. Singaravelu, and M. Elanchezhiyan (2015). Mater. Sci. Eng. 47, 351–356.

    Article  Google Scholar 

  41. A. K. Vala (2015). Environ. Prog. Sustain. Energy 34, 194–197.

    Article  CAS  Google Scholar 

  42. G. Balasubramani, R. Ramkumar, N. Krishnaveni, R. Sowmiya, P. Deepak, D. Arul, and P. Perumal (2015). J. Photochem. Photobiol. B148, 1–8.

    Article  Google Scholar 

  43. B. Paul, B. Bhuyan, D. D. Purkayastha, M. Dey, and S. S. Dhar (2015). Mater. Lett. 148, 37–40.

    Article  CAS  Google Scholar 

  44. H. Alishah, S. P. Seyedi, S. Y. Ebrahimipour, and S. Esmaeili-Mahani (2016). J. Clust. Sci. 44, 1–9.

    Google Scholar 

  45. P. Mishra, S. Ray, S. Sinha, B. Das, M. L. Khan, S. K. Behera, and A. Mishra (2016). Biochem. Eng. J. 105, 264–272.

    Article  CAS  Google Scholar 

  46. R. Anbarasu, G. Selvan, S. Baskar, and V. Raja (2016). Int. J. Adv. Sci. Res. 2, 38–44.

    Google Scholar 

  47. V. Ramalingam, S. Revathidevi, T. Shanmuganayagam, L. Muthulakshmi, and R. Rajaram (2016). RSC Adv. 6, 20598–20608.

    Article  CAS  Google Scholar 

  48. V. Gopinath, S. Priyadarshini, D. Mubarak Ali, M. F. Loke, N. Thajuddin, N. S. Alharbi, and J. Vadivelu (2016). Arab. J. Chem.. doi:10.1016/j.arabjc.2016.02.005.

    Google Scholar 

  49. B. S. Srinath and R. V. Rai (2015). J. Clust. Sci. 26, 1483–1494.

    Article  CAS  Google Scholar 

  50. N. Srivastava and M. Mukhopadhyay (2015). J. Clust. Sci. 26, 675–692.

    Article  CAS  Google Scholar 

  51. S.N. Correa, A.M. Naranjo, andA.P. Herrera, (2016). In J. Phys.: Conference Series 687. IOP Publishing.

  52. A. Rajeshwari, S. Suresh, N. Chandrasekaran, and A. Mukherjee (2016). RSC Adv. 6, 24000–24009.

    Article  CAS  Google Scholar 

  53. W. A. Ducker, T. J. Senden, and R. M. Pashley (1992). Langmuir 8, 1831–1836.

    Article  CAS  Google Scholar 

  54. B. Cappella and G. Dietler (1999). Surf. Sci. Rep. 34, 1–104.

    Article  CAS  Google Scholar 

  55. G. Binnig, C. E. Quate, and C. Gerber (1986). Phys. Rev. Lett. 56, 930–933.

    Article  Google Scholar 

  56. G. De Falco, M. Commodo, P. Minutolo, and A. D’Anna (2015). Aerosol Sci. Technol. 49, 281–289.

    Article  Google Scholar 

  57. R. Vijayakumar, V. Devi, K. Adavallan, and D. Saranya (2011). Phys. E 44, 665–671.

    Article  CAS  Google Scholar 

  58. S. Wu, S. Yan, W. Qi, R. Huang, J. Cui, R. Su, and Z. He (2015). Nanoscale Res. Lett. 10, 1–7.

    Article  Google Scholar 

  59. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog. 22, 577–583.

    Article  CAS  Google Scholar 

  60. T. Elavazhagan and K. D. Arunachalam (2011). Int. J. Nanomed. 6, 1265–1278.

    Article  CAS  Google Scholar 

  61. J. Jung, S. Park, S. Hong, M. W. Ha, H. G. Park, Y. Park, H. J. Lee, and Y. Park (2014). Carbohyd. Res. 386, 57–61.

    Article  CAS  Google Scholar 

  62. K. J. Rao and S. Paria (2015). ACS Sustain. Chem. Eng. 3, 483–491.

    Article  CAS  Google Scholar 

  63. R. C. Elgersma, V. M. Dijk, A. C. Dechesne, V. C. F. Nostrum, W. E. Hennink, D. T. Rijikers, and R. M. Liskamp (2009). Org. Biomol. Chem. 7, 4517–4525.

    Article  CAS  Google Scholar 

  64. V. Kumar, S. C. Yadav, and S. K. Yadav (2010). J. Chem. Technol. Biotechnol. 85, 1301–1309.

    Article  CAS  Google Scholar 

  65. S. S. Dash, B. G. Bag, and P. Hota (2015). Appl. Nanosci. 5, 343–350.

    Article  CAS  Google Scholar 

  66. A. K. Singh and O. N. Srivastava (2015). Nanoscale Res. Lett. 10, 1–12.

    Article  Google Scholar 

  67. A. K. Mittal, J. Bhaumik, S. Kumar, and U. C. Banerjee (2014). J. Colloid Interf. Sci. 415, 39–47.

    Article  CAS  Google Scholar 

  68. R. Majumdar, B.G. Bag, and P. Ghosh, (2015). Appl. Nanosci. 1-8.

  69. X. C. Chen, J. X. Bai, J. M. Cao, Z. J. Li, J. Xiong, L. Zhang, Y. Hong, and H. J. Ying (2009). Bioresour. Technol. 100, 919–924.

    Article  CAS  Google Scholar 

  70. A. D. Dwivedi and K. Gopal (2010). Colloid Surf. A. 369, 27–33.

    Article  CAS  Google Scholar 

  71. D. Andreescu, C. Eastman, K. Balantrapu, and D. V. Goia (2007). J. Mater. Res. 22, 2488–2496.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Prof. A.P. Mitra, Department of Agricultural and Food Engineering., Indian Institute of Technology-Kharagpur, India, for his kind help to provide the regenerable cultures of S. chirata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirlipta Saha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10876-016-1099-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, N., Gupta, S.D. Biogenic Synthesis and Structural Characterization of Polyshaped Gold Nanoparticles Using Leaf Extract of Swertia chirata Along with Process Optimization by Response Surface Methodology (RSM). J Clust Sci 27, 1419–1437 (2016). https://doi.org/10.1007/s10876-016-1009-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1009-8

Keywords

Navigation