Skip to main content
Log in

Structure Modulation in Four New Coordination Polymers by In Situ Ligands Synthesis of Anthracene Derivatives and Various Auxiliary N-donor Ligands

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Four novel coordination polymers, [Zn(HL1)2(phen)2]·2CH3OH·2H2O (1), [ZnCl(HL1)(4,4′-bipy)0.5] n (2), [Cd(HL1)(L2)0.5(2,2′-bipy)2]·3H2O (3), [Zn(L3)0.5(N3)1.5(phen)] n (4) (H2L1 = 9-(1H-tetrazole-5-yl)-10-carboxyl anthracene, H2L2 = 9,10-di-(1H-tetrazole-5-yl) anthracene, HL3 = 9-(1H-tetrazole-5-yl)-10-cyan anthracene, 1,10-phen = 1,10-phenanthroline, 4,4′-bipy = 4,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine), have been constructed by in situ ligands synthesis system. The formation of tetrazole-based ligands H2L1, H2L2 and H2L3 involves the in situ Sharpless [2 + 3] cycloaddition reaction between 9,10-dicyanoanthracene (DCA) and NaN3 in the presence of Zn2+/Cd2+ ions as Lewis-acid catalysts under hydro/solvothermal conditions. At the same time, there is also another in situ carboxyl ligand synthesis reaction by hydrolysis from nitrile in compounds 1 and 2. The four compounds have been characterized by elemental analysis, IR and single-crystal X-ray diffraction analysis. Compound 1 exhibits a butterfly-shaped mononuclear structure. Compound 2 represents a 2D framework constructed by six-membered {Zn6} rings as secondary building units (SBUs). Compound 3 presents a dinuclear {Cd2} structure with two butterflies “flying side by side” fashion. While compound 4 displays a 1D chain structure based on a dinuclear {Zn2} SBUs. Moreover, the luminescence properties of 1–4 have been also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. F. Zeng, X. Hu, F. C. Liu, and X. H. Bu (2009). Chem. Soc. Rev. 38, 469.

    Article  CAS  Google Scholar 

  2. Y. Cui, S. J. Lee, and W. B. Lin (2003). J. Am. Chem. Soc. 125, 6014.

    Article  CAS  Google Scholar 

  3. J. R. Li, J. Sculley, and H. C. Zhou (2012). Chem. Rev. 112, 869.

    Article  CAS  Google Scholar 

  4. S. S. Chen, M. Chen, S. Takamizawa, P. Wang, G. C. Lv, and W. Y. Sun (2011). Chem. Commun. 47, 4902.

    Article  CAS  Google Scholar 

  5. L. T. Du, Z. Y. Lu, K. Y. Zheng, J. Y. Wang, X. Zheng, Y. Pan, X. Z. You, and J. F. Bai (2013). J. Am. Chem. Soc. 135, 562.

    Article  CAS  Google Scholar 

  6. C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, and E. B. Wang (2011). Adv. Mater. 23, 5629.

    Article  CAS  Google Scholar 

  7. Y. Q. Lan, H. L. Jiang, S. L. Li, and Q. Xu (2011). Adv. Mater. 23, 5015.

    Article  CAS  Google Scholar 

  8. Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.

    Article  CAS  Google Scholar 

  9. G. P. Yang, L. Hou, X. J. Luan, B. Wu, and Y. Y. Wang (2012). Chem. Soc. Rev. 41, 6992.

    Article  CAS  Google Scholar 

  10. Z. P. Demko and K. B. Sharpless (2001). J. Org. Chem. 66, 7945.

    Article  CAS  Google Scholar 

  11. J. Y. Zhang, A. L. Cheng, Q. Yue, W. W. Sun, and E. Q. Gao (2008). Chem. Commun. 44, 847.

    Article  Google Scholar 

  12. T. Wu, B. H. Yi, and D. Li (2005). Inorg. Chem. 44, 4130.

    Article  CAS  Google Scholar 

  13. J. Tao, Z. J. Ma, R. B. Huang, and L. S. Zheng (2004). Inorg. Chem. 43, 6133.

    Article  CAS  Google Scholar 

  14. X. M. Chen and M. L. Tong (2007). Acc. Chem. Res. 40, 162.

    Article  Google Scholar 

  15. X. M. Zhang (2005). Coord. Chem. Rev. 249, 1201.

    Article  CAS  Google Scholar 

  16. H. Zhao, Z. R. Qu, H. Y. Ye, and R. G. Xiong (2008). Chem. Soc. Rev. 37, 84.

    Article  Google Scholar 

  17. J. P. Zhang and X. M. Chen (2006). Chem. Commun. 42, 1689.

    Article  Google Scholar 

  18. X. M. Zhang, M. L. Tong, and X. M. Chen (2002). Angew. Chem. Int. Ed. 41, 1029.

    Article  CAS  Google Scholar 

  19. S. Hu, J. C. Chen, M. L. Tong, B. Wang, Y. X. Yan, and S. R. Batten (2005). Angew. Chem. Int. Ed. 44, 547.

    Google Scholar 

  20. R. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams, and Z. L. Xue (2002). Angew. Chem. Int. Ed. 41, 3800.

    Article  CAS  Google Scholar 

  21. X. Xue, X. S. Wang, L. Z. Wang, R. G. Xiong, B. F. Abrahams, X. Z. You, Z. L. Xue, and C. M. Che (2002). Inorg. Chem. 41, 6544.

    Article  CAS  Google Scholar 

  22. Y. W. Li, W. L. Chen, Y. H. Wang, Y. G. Li, and E. B. Wang (2009). J. Solid State Chem. 182, 736.

    Article  CAS  Google Scholar 

  23. Y. W. Li, S. J. Liu, T. L. Hu, and X. H. Bu (2014). Dalton Trans. 43, 11470.

    Article  CAS  Google Scholar 

  24. Y. W. Li, H. Y. Ma, S. N. Wang, J. Xu, D. C. Li, J. M. Dou, and X. H. Bu (2015). RSC Adv. 5, 88809.

    Article  CAS  Google Scholar 

  25. G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  26. G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  27. D. Sun, F. J. Liu, R. B. Huang, and L. S. Zheng (2011). Inorg. Chem. 50, 12393.

    Article  CAS  Google Scholar 

  28. Y. Q. Zhao, M. X. Fang, Z. H. Xu, X. P. Wang, S. N. Wang, L. L. Han, X. Y. Li, and D. Sun (2014). CrystEngComm. 16, 3015.

    Article  CAS  Google Scholar 

  29. D. Sun, Z. H. Wei, C. F. Yang, D. F. Wang, N. Zhang, R. B. Huang, and L. S. Zheng (2011). CrystEngComm. 13, 1591.

    Article  CAS  Google Scholar 

  30. S. Wang (2001). Coord. Chem. Rev. 215, 79.

    Article  CAS  Google Scholar 

  31. Y. Q. Xu, D. Q. Yuan, B. L. Wu, L. Han, M. Y. Wu, F. L. Jiang, and M. C. Hong (2006). Cryst. Growth Des. 6, 1168.

  32. Y. Gong, H. F. Shi, P. G. Jiang, W. Hua, and J. H. Lin (2014). Cryst. Growth Des. 14, 649.

    Article  CAS  Google Scholar 

  33. B. L. Wu, C. P. Liu, D. Q. Yuan, F. L. Jiang, and M. C. Hong (2008). Cryst. Growth Des. 8, 3791.

    Article  CAS  Google Scholar 

  34. E. C. Yang, H. K. Zhao, B. Ding, X. G. Wang, and X. J. Zhao (2007). Cryst. Growth Des. 7, 2009.

    Article  CAS  Google Scholar 

  35. S. Yuan, Y. K. Deng, and D. Sun (2014). Chem.-Eur. J. 20, 10093.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NNSF of China (21403102, 51303076 and 51172102), the National Undergraduate Training Programs for Innovation and Entrepreneurship (201510447001 and 201510447026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Wu Li or Xin Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, HY., Wang, WQ., Yang, N. et al. Structure Modulation in Four New Coordination Polymers by In Situ Ligands Synthesis of Anthracene Derivatives and Various Auxiliary N-donor Ligands. J Clust Sci 27, 1293–1306 (2016). https://doi.org/10.1007/s10876-016-1000-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1000-4

Keywords

Navigation