Skip to main content
Log in

A Theoretical Study of the Water–Gas-Shift Reaction on Cu6TM (TM = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We perform density-functional theory calculations to investigate the water–gas-shift (WGS) reaction on Cu6TM (TM = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) clusters through redox, carboxyl, and formate mechanisms, which correspond to CO* + O* → CO2 (g), CO* + OH* → COOH* → CO2 (g) + H*, CO* + H* + O* → CHO* + O* → HCOO** → CO2(g) + H* respectively. An energetic span model is used to estimate the efficiency of the three mechanisms of different Cu6TM. It finds that for groups 9 and 10, carboxyl mechanism is the predominant mechanism in the three. While for Cu6TM (Cu, Ag, Au), it finds that the formate mechanism form the TDI and TDTS. Furthermore, the turnover frequency calculations are done for every Cu6TM cluster. The results show that Cu6Co is the best catalyst for WGS reaction. Finally, to understand the high catalytic activity of the Cu6Co cluster, the nature of the interaction between adsorbate and substrate is also analyzed by the detailed electronic local density of states. These findings enrich the applications of Cu-based materials to the high activity catalytic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Y. Gan and Y. J. Zhao (2012). J. Phys. Chem. C. 116, 16089.

    Article  CAS  Google Scholar 

  2. D. Mendes, V. Chibante, A. Menes, and L. M. Madeira (2010). Ind. Eng. Chem. Res. 49, 11269.

    Article  CAS  Google Scholar 

  3. J. A. Rodriguez, S. Ma, P. Liu, J. Evans, and M. Pérez (2007). Science 318, 1757.

    Article  CAS  Google Scholar 

  4. A. A. Gokhale, J. A. Dumesic, and M. Mavrikakis (2008). J. Am. Chem. Soc. 130, 1402.

    Article  CAS  Google Scholar 

  5. C. S. Chen, Y. T. Lai, T. W. Lai, J. H. Wu, C. H. Chen, J. F. Lee, and H. M. Kao (2013). ACS. Catal. 3, 667.

    Article  CAS  Google Scholar 

  6. C. D. Zeinalipour-Yazdi and M. A. Efstathiou (2008). J. Phys. Chem. C. 112, 19030.

    Article  CAS  Google Scholar 

  7. L. R. Jie, C. H. Ling, J. S. Pon, L. F. Yi, and C. H. Tsung (2012). J. Phys. Chem. C. 116, 336.

    Google Scholar 

  8. P. Liu (2010). J. Chem. Phys. 133, 204705.

    Article  Google Scholar 

  9. S. K. Wu, R. J. Lin, S. M. Jang, H. L. Chen, S. M. Wang, and F. Y. Li (2014). J. Phys. Chem. C. 118, 298.

    Article  Google Scholar 

  10. A. B. Vidal and P. Liu (2012). Phys. Chem. Chem. Phys. 14, 16626.

    Article  CAS  Google Scholar 

  11. C. H. Lin, C. L. Chen, and J. H. Wang (2011). J. Phys. Chem. C. 115, 18582.

    Article  CAS  Google Scholar 

  12. A. A. Phatak, W. N. Delgass, F. H. Ribeiro, and W. F. Schneider (2009). J. Phys. Chem. C. 113, 7269.

    Article  CAS  Google Scholar 

  13. G. C. Wang and J. Nakamura (2010). J. Phys. Chem. Lett. 1, 3053.

    Article  CAS  Google Scholar 

  14. C. Vignatti, M. S. Avila, C. R. Apesteguía, and T. F. Garetto (2010). Int. J. Hydrogen. Energy. 35, 7302.

    Article  CAS  Google Scholar 

  15. H. J. Wei, C. L. Gomez, and R. J. Meyer (2012). Top. Catal. 55, 313.

    Article  CAS  Google Scholar 

  16. Y. Y. Chen, M. Dong, J. G. Wang, and H. J. Jiao (2012). J. Phys. Chem. C. 116, 25368.

    Article  CAS  Google Scholar 

  17. R. C. Catapan, A. M. Oliveira, Y. Chen, and D. G. Vlachos (2012). J. Phys. Chem. C. 116, 20281.

    Article  CAS  Google Scholar 

  18. D. H. Wells, W. N. Delgass, and K. T. Thomson (2002). J. Chem. Phys. 117, 10597.

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, (2010) Gaussian 09, Revision C. 01, Gaussian Inc., Wallingford.

  20. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  21. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  22. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  23. S. Kozuch and S. Shaik (2010). Acc. Chem. Res. 44, 101.

    Article  Google Scholar 

  24. J. Greeley and M. Mavrikakis (2003). Surf. Sci. 540, 215.

    Article  CAS  Google Scholar 

  25. K. P. Huber, G. Herzberg (1979). Van Nostrand Reinhold, New York.

  26. T. Seta, M. Yamamoto, M. Nishioka, and M. Sadakata (2003). J. Phys. Chem. A. 107, 962.

    Article  CAS  Google Scholar 

  27. G. H. Guvelioglu, P. Ma, X. He, R. C. Forrey, and H. Cheng (2005). Phys. Rev. Lett. 94, 026103.

    Article  Google Scholar 

  28. V. L. Mazalova, A. V. Soldatov, S. Adam, A. Yakovlev, T. Möller, and R. L. Johnston (2009). J. Phys. Chem. C. 113, 9086.

    Article  CAS  Google Scholar 

  29. J. H. Wu and F. Hagelberg (2006). J. Phys. Chem. A. 110, 5901.

    Article  CAS  Google Scholar 

  30. S. L. Han, X. L. Xue, X. C. Nie, H. Zhai, F. Wang, Q. Sun, Y. Jia, S. F. Li, and Z. X. Guo (2010). Phys. Lett. A. 374, 4324.

    Article  CAS  Google Scholar 

  31. L. Wang, D. Dong, W. Shi-Jian, and Z. Zheng-Quan (2015). J. Phys. Chem. Solids. 76, 10.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant No. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (SD2015CXXM-80, WL2015CXCY-YJ-18) and Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Guo, L. & Liu, N. A Theoretical Study of the Water–Gas-Shift Reaction on Cu6TM (TM = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) Clusters. J Clust Sci 27, 523–535 (2016). https://doi.org/10.1007/s10876-015-0945-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0945-z

Keywords

Navigation