Skip to main content

Advertisement

Log in

Synthesis of Fe3O4/N-TiO2/Ag Hollow Nanospheres and Their Application as Recyclable Photocatalysts

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Photocatalysis has emerged as an advance and environmental-friendly process for breakdown of organic contaminants in waste water. This work reports facile synthesis and characterization of stable magnetically separable hollow spherical Fe3O4/N-TiO2/Ag and their effectiveness for photocatalysis. Scanning electron microscopy, X-ray diffraction, Energy dispersive X-ray spectroscopy, SQUID magnetometry, UV–Vis absorption spectrum and photoluminescence were performed to investigate the properties of the prepared magnetic photocatalyst. The photocatalytic efficiency of the prepared nanocatalyst was evaluated with decomposition of methyl orange (MO) under visible light and solar light illumination. Fe3O4/N-TiO2/Ag photocatalyst showed large enhancement in the degradation MO compared to undoped TiO2. Moreover, repeated usage of the photocatalyst proved its liability to be collected and reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda (1972). Nature 238, 37–38.

    Article  CAS  Google Scholar 

  2. M. A. LunagómezRocha, G. Del Ángel, G. Torres-Torres, A. Cervantes, A. Vázquez, A. Arrieta, and J. N. Beltramini (2015). Catal. Today 250, 145–154.

    Article  CAS  Google Scholar 

  3. I. Tamiolakis, I. N. Lykakis, and G. S. Armatas (2015). Catal. Today 250, 180–186.

    Article  CAS  Google Scholar 

  4. G. Y. Halasi, I. Ugrai, and F. Solymosi (2011). J. Catal. 281, 309.

    Article  CAS  Google Scholar 

  5. R. Kun, S. Tarján, A. Oszkó, T. Seemann, V. Zöllmer, M. Busse, and I. Dékány (2009). J. Solid State Chem. 182, 3076–3084.

    Article  CAS  Google Scholar 

  6. L. Kőrösi, S. Papp, I. Bertóti, and I. Dékány (2007). Chem. Mater. 19, 4811–4819.

    Article  CAS  Google Scholar 

  7. L. Kőrösi, A. Oszkó, G. Galbács, A. Richardt, V. Zöllmer, and I. Dékány (2007). Appl. Catal. B 77, 175–183.

    Article  CAS  Google Scholar 

  8. G. Halasi, A. Kecskeméti, and F. Solymosi (2010). Catal. Lett. 135, 16–20.

    Article  CAS  Google Scholar 

  9. N. F. Jaafar, A. A. Jalil, S. Triwahyono, J. Efendi, R. R. Mukti, R. Jusoh, N. W. C. Jusoh, A. H. Karim, N. F. M. Salleh, and V. Suendo (2015). Appl. Surf. Sci. 338, 75–84.

    Article  CAS  Google Scholar 

  10. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano (2006). Appl. Catal. A 306, 120–127.

    Article  CAS  Google Scholar 

  11. H. M. Sung-Suh, J. R. Choi, H. J. Hah, and S. M. Koo (2004). J. Photochem. Photobiol. A 163, 37–41.

    Article  CAS  Google Scholar 

  12. J. Lee and W. Choi (2005). J. Phys. Chem. B 109, 7399–7406.

    Article  CAS  Google Scholar 

  13. J. Sá, M. Fernandez-García, and J. A. Anderson (2008). Catal. Commun. 9, 1991–1995.

    Article  CAS  Google Scholar 

  14. R. Georgekutty, M. K. Seery, and S. C. Pillai (2008). J. Phys. Chem. C 112, 13563–13570.

    Article  CAS  Google Scholar 

  15. M. M. Viana, N. D. S. Mohellam, D. R. Miquita, K. Balzuweit, and E. S. Pinto (2013). Appl. Surf. Sci. 265, 130–136.

    Article  CAS  Google Scholar 

  16. K. M. Mayer and J. H. Hafner (2011). Chem. Rev. 111, 3828–3857.

    Article  CAS  Google Scholar 

  17. P. Jiang, J. F. Bertone, and V. L. Colvin (2001). Science 291, 453–457.

    Article  CAS  Google Scholar 

  18. X. Liu, H. Yang, L. Han, W. Liu, C. Zhang, X. Zhang, S. Wang, and Y. Yang (2013). Cryst. Eng. Commun. 15, 7769–7774.

    Article  CAS  Google Scholar 

  19. J. Zhang, S. W. Liu, J. G. Yu, and M. J. Jaroniec (2011). Mater. Chem. 21, 14655.

    Article  CAS  Google Scholar 

  20. A. Imhof (2001). Langmuir 17, 3579–3583.

    Article  CAS  Google Scholar 

  21. T. Seto, K. Koga, F. Takano, H. Akinaga, T. Orii, M. Hirasawa, and M. Murayama (2006). J. Photochem. Photobiol. A 182, 342–345.

    Article  CAS  Google Scholar 

  22. K. Menzel, J. Lindner, and H. Nirschl (2012). Sep. Purif. Technol. 92, 122–128.

    Article  CAS  Google Scholar 

  23. Q. He, Z. Zhang, J. Xiong, Y. Xiong, and H. Xiao (2008). Optical Mater. 31, 380–384.

    Article  CAS  Google Scholar 

  24. B. Chen, Y. Zhu, W. Jiang, Z. Chen, C. Wang, G. Zhou, and P. Zhang (1999). J. Nanopart. Res. 1, 491–496.

    Article  Google Scholar 

  25. J. W. Wang, W. Zhu, Y. Q. Zhang, and S. X. Liu (2007). J. Phys. Chem. C 111, 1010–1014.

    Article  CAS  Google Scholar 

  26. K. M. Reddy, S. V. Manorama, and A. R. Reddy (2002). Mater. Chem. Phys. 78, 239–243.

    Article  Google Scholar 

  27. A. Fujishima (2003). Science 301, 1673A.

    Article  Google Scholar 

  28. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima (2003). Nat. Mater. 2, 29–31.

    Article  CAS  Google Scholar 

  29. J. M. Herrmann, H. Tahiri, Y. AitIchou, G. Lassaletta, A. R. GonzalezElipe, and A. Fernandez (1997). Appl. Catal. B 13, 219–223.

    Article  CAS  Google Scholar 

  30. B. Tian, C. Li, F. Gu, and H. Jiang (2009). Catal. Commun. 10, 925–929.

    Article  CAS  Google Scholar 

  31. F. B. Li and X. Z. Li (2002). Chemosphere 48, 1103–1111.

    Article  CAS  Google Scholar 

  32. K. Nagaveni, M. S. Hegde, and G. Madras (2004). J. Phys. Chem. B 108, 20204–20212.

    Article  CAS  Google Scholar 

  33. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and B. Stephen (2011). Nano Lett. 11, 1111–1116.

    Article  CAS  Google Scholar 

  34. S. T. Kochuveedu, Y. H. Jang, and D. H. Kim (2013). Chem. Soc. Rev. 42, 8467–8493.

    Article  CAS  Google Scholar 

  35. P. Simon, B. Pignon, B. Miao, S. Coste-Leconte, Y. Leconte, S. Marguet, P. Jegou, B. Bouchet-Fabre, C. Reynaud, and N. Herlin-Boime (2010). Chem. Mater. 22, 3704.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Research Project of Education Department of Henan Province: Basic Research (Grant Nos. 12A150011, 14A140028) and the Natural Science Research Project of Science and Technology Department of Henan Province (Grant No. 132102310280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, W. Synthesis of Fe3O4/N-TiO2/Ag Hollow Nanospheres and Their Application as Recyclable Photocatalysts. J Clust Sci 27, 403–415 (2016). https://doi.org/10.1007/s10876-015-0938-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0938-y

Keywords

Navigation