Skip to main content
Log in

Sacrificial-Template-Assisted Syntheses of Aluminate and Titanate Nanonets via Interfacial Reaction Growth

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Crystalline FeAlO3/FeAl2O4 nanonets were synthesized by a modified template-assisted approach using anodic aluminum oxide (AAO) as a reactive and sacrificial template to direct and promote interfacial reaction growth (IRG). The as-prepared nanonets replicate the morphology of the porous AAO template and contain mixed FeAlO3 and FeAl2O4. To extend the applicability of the sacrificial-template-assisted IRG approach, porous anodic titanium oxide (ATO) was used as template in place of AAO, giving rise to Zn2TiO4 nanonet/nanotube and PbTiO3 nanonet/nanotube. These latter products are polycrystalline due to the polycrystalline nature of the ATO template. Growth mechanism for the formation of the Zn2TiO4 and PbTiO3 nanostructures is proposed. The present study shows that the IRG approach can be extended to fabricate patterned complex oxide nanomaterials that may find applications in a wide range of nanotechnologies such as electronics, photonics and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Cai and C. R. Martin (1989). J. Am. Chem. Soc. 111, 4138–4139.

    Article  CAS  Google Scholar 

  2. C. R. Martin, L. S. Van Dyke, Z. Cai, and W. Liang (1990). J. Am. Chem. Soc. 112, 8976–8977.

    Article  CAS  Google Scholar 

  3. C. J. Brumlik and C. R. Martin (1991). J. am. chem. soc. 113, 3174–3175.

    Article  CAS  Google Scholar 

  4. C. R. Martin (1994). Science 266, 1961–1966.

    Article  CAS  Google Scholar 

  5. X. J. Wu, F. Zhu, C. Mu, Y. Liang, L. Xu, Q. Chen, R. Chen, and D. Xu (2010). Coord. Chem. Rev. 254, 1135–1150.

    Article  CAS  Google Scholar 

  6. X. P. Shen, H. J. Liu, X. Fan, Y. Jiang, J. M. Hong, and Z. Xu (2005). J. Cryst. Growth 276, 471–477.

    Article  CAS  Google Scholar 

  7. Y. Mao and S. S. Wong (2004). J. Am. Chem. Soc. 126, 15245–15252.

    Article  CAS  Google Scholar 

  8. F. Zhang and S. S. Wong (2009). Chem. Mater. 21, 4541–4554.

    Article  CAS  Google Scholar 

  9. B. Cheng and E. T. Samulski (2001). J. Mater. Chem. 11, 2901–2902.

    Article  CAS  Google Scholar 

  10. J. Wan, X. Chen, Z. Wang, X. Yang, and Y. Qian (2005). J. Cryst. Growth 276, 571–576.

    Article  CAS  Google Scholar 

  11. X. Zhu, J. Ma, Y. Wang, J. Tao, J. Zhou, Z. Zhao, L. Xie, and H. Tian (2006). Mater. Res. Bull. 41, 1584–1588.

    Article  CAS  Google Scholar 

  12. T. Thongtem, A. Phuruangrat, and S. Thongtem (2009). Cryst. Res. Technol. 44, 865–869.

    Article  CAS  Google Scholar 

  13. H. Su, Y. Xie, P. Gao, H. Lu, Y. Xiong, and Y. Qian (2000). Chem. Lett. 29, 790–791.

    Article  Google Scholar 

  14. J. Yu, F. Wang, Y. Wang, H. Gao, J. Li, and K. Wu (2010). Chem. Soc. Rev. 39, 1513–1525.

    Article  CAS  Google Scholar 

  15. L. Liu, W. Lee, R. Scholz, E. Pippel, and U. Gösele (2008). Angew. Chem. Int. Ed. 47, 7004–7008.

    Article  CAS  Google Scholar 

  16. J. M. Macak, C. Zollfrank, B. J. Rodriguez, H. Tsuchiya, M. Alexe, P. Greil, and P. Schmuki (2009). Adv. Mater. 21, 3121–3125.

    Article  CAS  Google Scholar 

  17. Y. Yang, D. S. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias (2008). J. Phys. Chem. C 112, 4068–4074.

    Article  CAS  Google Scholar 

  18. J. F. Hong, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Gosele (2006). Nat. Mater. 5, 627–631.

    Article  Google Scholar 

  19. H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias (2006). Nanotechnology 17, 5157.

    Article  CAS  Google Scholar 

  20. F. Wang, Y. Wang, J. Yu, Y. Xie, J. Li, and K. Wu (2008). J. Phys. Chem. C 112, 13121–13125.

    Article  CAS  Google Scholar 

  21. Y. Wang, W. Wen, and K. Wu (2010). Sci. China Chem. 53, 438–444.

    Article  CAS  Google Scholar 

  22. Y. Wang, Q. Liao, H. Lei, X. P. Zhang, X. C. Ai, J. P. Zhang, and K. Wu (2006). Adv. Mater. 18, 943–947.

    Article  CAS  Google Scholar 

  23. Y. Wang and K. Wu (2005). J. Am. Chem. Soc. 127, 9686–9687.

    Article  CAS  Google Scholar 

  24. F. Bouree, J. L. Baudour, E. Elbadraoui, J. Musso, C. Laurent, and A. Rousset (1996). Acta Crystallogr Sect. B 52, 217–222.

    Article  Google Scholar 

  25. S. A. Mayén-Hernández, G. Torres-Delgado, R. Castanedo-Pérez, J. Márquez-Marín, M. Gutiérrez-Villarreal, and O. Zelaya-Angel (2008). Sol. Energy Mater. Sol. Cells 91, 1454–1457.

    Article  Google Scholar 

  26. K. H. Yoon, J. Cho, and D. H. Kang (1999). Mater. Res. Bull. 34, 1451–1461.

    Article  CAS  Google Scholar 

  27. A. C. Chaves, S. J. G. Lima, R. C. M. U. Araújo, M. A. M. A. Maurera, E. Longo, P. S. Pizani, L. G. P. Simőes, L. E. B. Soledade, A. G. Souza amd, and I. M. G. Santos (2006). J. Solid State Chem. 179, 985–992.

    Article  CAS  Google Scholar 

  28. K. Jothimurugesan and S. K. Gangwal (1998). Ind. Eng. Chem. Res. 37, 1929–1933.

    Article  CAS  Google Scholar 

  29. M. W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, and U. Gosele (2004). Nat. Mater. 3, 87–90.

    Article  CAS  Google Scholar 

  30. I. Vrejoiu, M. Alexe, D. Hesse, and U. Gösele (2008). Adv. Funct. Mater. 18, 3892–3906.

    Article  CAS  Google Scholar 

  31. M. E. Villafuerte-Castrejón, E. Castillo-Pereyra, J. Tartaj, L. Fuentes, D. Bueno-Baqués, G. González, and J. A. Matutes-Aquino (2004). J. Magn. Magn. Mater. 272–276, 837–839.

    Article  Google Scholar 

  32. A. Muan and C. L. Gee (1956). J. Am. Ceram. Soc. 39, 207–214.

    Article  CAS  Google Scholar 

  33. L. M. Atlasamd and W. K. Sumida (1958). J. Am. Ceram. Soc. 41, 150–160.

    Article  Google Scholar 

  34. R. R. Dayal, J. A. Gard, and F. P. Glasser (1965). Acta Crystallogr. 18, 574–575.

    Article  CAS  Google Scholar 

  35. X. Devaux, A. Rousset, J. M. Broto, H. Rakoto, and S. Askenazy (1990). J. Mater. Sci. Lett. 9, 371–372.

    Article  CAS  Google Scholar 

  36. X. Wen, S. Wang, Y. Ding, Z. L. Wang, and S. Yang (2004). J. Phys. Chem. B 109, 215–220.

    Article  Google Scholar 

  37. Y. Y. Fu, R. M. Wang, J. Xu, J. Chen, Y. Yan, A. V. Narlikar, and H. Zhang (2003). Chem. Phys. Lett. 379, 373–379.

    Article  CAS  Google Scholar 

  38. Y. Xie, N. Yang, Y. Liu, and Y. Tang (1982). Sci. China Ser. B 8, 673–682.

    Google Scholar 

  39. Y. C. Xie and Y. Q. Tang (1990). Adv. Catal. 37, 1–43.

    CAS  Google Scholar 

  40. Y. Li, C. Cao, and Z. Chen (2010). J. Phys. Chem. C 114, 21029–21034.

    Article  CAS  Google Scholar 

  41. Q. Chen and D. Xu (2009). J. Phys. Chem. C 113, 6310–6314.

    Article  CAS  Google Scholar 

  42. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, and C. A. Grimes (2007). J. Phys. Chem. C 111, 14992–14997.

    Article  CAS  Google Scholar 

  43. Y. Yang, X. Sun, B. Tay, J. Wang, Z. Dong, and H. Fan (2007). Adv. Mater. 19, 1839–1844.

    Article  CAS  Google Scholar 

  44. Y. Yang, R. Scholz, H. J. Fan, D. Hesse, U. Gösele, and M. Zacharias (2009). ACS Nano 3, 555–562.

    Article  CAS  Google Scholar 

  45. S. K. Manik, P. Bose, and S. K. Pradhan (2003). Mater. Chem. Phys. 82, 837–847.

    Article  CAS  Google Scholar 

  46. C. Cheng, W. Li, T. L. Wong, K. M. Ho, K. K. Fung, and N. Wang (2011). J. Phys. Chem. C 115, 78–82.

    Article  CAS  Google Scholar 

  47. D. Kowalski and P. Schmuki (2010). Chem. Commun. 46, 8585–8587.

    Article  CAS  Google Scholar 

  48. A. Nourmohammadi, M. Bahrevar, S. Schulze, and M. Hietschold (2008). J. Mater. Sci. 43, 4753–4759.

    Article  CAS  Google Scholar 

  49. L. Liu, T. Ning, Y. Ren, Z. Sun, F. Wang, W. Zhou, S. Xie, L. Song, S. Luo, D. Liu, J. Shen, W. Ma, and Y. Zhou (2008). Mater. Sci. Eng. B 149, 41–46.

    Article  CAS  Google Scholar 

  50. M. Teresa-Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, and P. Nanni (2009). Chem. Mater. 21, 5058–5065.

    Article  Google Scholar 

  51. Z. Deng, Y. Dai, W. Chen, and X. Pei (2010). J. Phys. Chem. C 114, 1748–1751.

    Article  CAS  Google Scholar 

  52. Y. Yang, X. Wang, C. Zhong, C. Sun, and L. Li (2008). Appl. Phys. Lett. 92, 122907.

    Article  Google Scholar 

  53. Y. Yang, X. H. Wang, C. K. Sun, and L. T. Li (2008). J. Am. Ceram. Soc. 91, 3820–3822.

    Article  CAS  Google Scholar 

  54. Y. Yang, X. H. Wang, C. K. Sun, and L. T. Li (2008). J. Appl. Phys. 104, 124108.

    Article  Google Scholar 

  55. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki (2005). Electro-chem. Commun. 7, 97–100.

    Article  CAS  Google Scholar 

  56. H. Tsuchiya, J. Macak, I. Sieber, and P. Schmuki (2005). Small 1, 722–725.

    Article  CAS  Google Scholar 

  57. N. K. Allam, X. J. Feng, and C. A. Grimes (2008). Chem. Mater. 20, 6477–6481.

    Article  CAS  Google Scholar 

  58. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki (2005). Electrochem. Commun. 7, 295–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by National Natural Science Foundation of China (21133001, 21333001, 21261130090) and Ministry of Science and Technology (2011CB808702, 2013CB933400), China. Partial support from Singapore NRF CREATE-SPURc project is also acknowledged.

Author Contribution

The manuscript was written through contributions of all authors, and all authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boon K. Teo or Kai Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Yu, J., Wang, Y. et al. Sacrificial-Template-Assisted Syntheses of Aluminate and Titanate Nanonets via Interfacial Reaction Growth. J Clust Sci 27, 139–153 (2016). https://doi.org/10.1007/s10876-015-0916-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0916-4

Keywords

Navigation