Skip to main content
Log in

Superparamagnetic Fe3O4 Nanoparticles Decorated Multiwalled Carbon Nanotubes: Preparation via Cyclic Microwave Approach and Their Drug Release Behavior

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Superparamagnetic Fe3O4 nanoparticles decorated multiwalled carbon nanotubes were synthesized by cyclic microwave method and the effect of different reaction parameters on the products were also investigated. The as synthesized products were characterized by XRD, TEM, SEM, EDS, FT-IR, VSM, and Uv–Vis spectroscopy. It was observed that precursors’ concentration ratio had great effect on the particle size and decorating quality. Also the effect of the other parameters including irradiation power and time on product size and uniformity of the product were also investigated. The best products with desired particle size distribution obtained when irradiation power and reaction time were 900 W and 6 min, respectively. Aspirin and acetaminophen were applied as a model drug and the drug release behavior of the composite was investigated. It was observed that the drug discharge was highly dependent to the pH and can be tuned by applying magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Iijima (1991). Nature. 354, 56.

    Article  CAS  Google Scholar 

  2. W. A. Heer, A. Chatelain, and D. A. Ugarte (1995). Science. 270, 1179.

    Article  Google Scholar 

  3. B. R. Goldsmith (2007). Science. 318, 1886.

    Article  Google Scholar 

  4. J. Jang, J. Bae, and S. H. Yoon (2003). J. Mater. Chem. 13, 676.

    Article  CAS  Google Scholar 

  5. J. Liu, M. Shao, X. Chen, W. Yu, X. Liu, and Y. Qian (2003). J. Am. Chem. Soc. 125, 8088.

    Article  CAS  Google Scholar 

  6. M. C. Schnitzler, M. M. Oliveira, D. Ugarte, and A. J. G. Zarbin (2003). Chem. Phys. Lett. 381, 541.

    Article  CAS  Google Scholar 

  7. G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, and K. G. Kornev (2005). Nano Lett. 5, 879.

    Article  CAS  Google Scholar 

  8. Z. Wang, Z. Zhao, and J. Qiu (2006). Carbon. 44, 1845.

    Article  CAS  Google Scholar 

  9. R. Lv, F. Kang, W. Wang, J. Wei, J. Gu, K. Wang, and D. Wu (2007). Carbon. 45, 1433.

    Article  CAS  Google Scholar 

  10. K. Jiang, A. Eitan, L. S. Schadler, P. M. Ajayan, and R. W. Siegel (2003). Nano Lett. 3, 275.

    Article  CAS  Google Scholar 

  11. J. Li, S. Tang, L. Lu, and H. Zeng (2007). J. Am. Chem. Soc. 129, 9401.

    Article  CAS  Google Scholar 

  12. W. Chen, X. Pan, M. G. Willinger, D. S. Su, and X. Bao (2006). J. Am. Chem. Soc. 128, 3136.

    Article  CAS  Google Scholar 

  13. Y. Q. Liu and L. Gao (2005). Carbon. 43, 47.

    Article  Google Scholar 

  14. G. Korneva, H. H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, and K. G. Kornev (2005). Nano Lett. 5, 879.

    Article  CAS  Google Scholar 

  15. F. Stoffelbach, A. Aqil, C. Jérôme, R. Jérôme, and C. Detrembleur (2005). Chem. Commun. 36, 4532.

    Article  Google Scholar 

  16. K. Tanaka, N. Kitamura, and Y. Chujo (2008). Nucleic Acids Symp. Ser. (Oxf). 52, 693.

  17. C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A. S. Lubbe (2000). Cancer Res. 60, 6641.

    CAS  Google Scholar 

  18. T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar (2008). Biomaterials. 29, 4012.

    Article  CAS  Google Scholar 

  19. Y. Liu, D. C. Wu, W. D. Zhang, X. Jiang, C. B. He, T. S. Chung, S. H. Goh, and K. W. Leong (2005). Angew. Chem. Int. Ed. 44, 4782.

    Article  CAS  Google Scholar 

  20. A. A. Bhirde, V. Patel, J. Gavard, G. F. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. Silvio Gutkind, and J. F. Rusling (2009). Acs Nano. 3, 307.

  21. W. Wu, R. T. Li, X. C. Bian, Z. S. Zhu, D. Ding, X. L. Li, Z. Jia, X. Jiang, and Y. Hu (2009). ACS Nano. 3, 2740.

    Article  CAS  Google Scholar 

  22. G. Pastorin, W. Wu, S. Wieckowski, J. P. Briand, K. Kostarelos, and M. Prato (2006). Chem. Commun. 11, 1182.

    Article  Google Scholar 

  23. C. L. Lay, H. Q. Liu, H. R. Tan, and Y. Liu (2010). Nanotechnology. 21, 065101.

    Article  Google Scholar 

  24. X. K. Zhang, L. J. Meng, Q. G. Lu, Z. F. Fei, and P. J. Dyson (2009). Biomaterials. 30, 6041.

    Article  CAS  Google Scholar 

  25. R. B. Li, R. Wu, L. Zhao, M. H. Wu, L. Yang, H. And, and F. Zou (2010). ACS Nano. 4, 1399.

    Article  CAS  Google Scholar 

  26. L. Jiang and L. Gao (2003). Chem. Mater. 15, 2848.

    Article  CAS  Google Scholar 

  27. J. Wan, W. Cai, J. Feng, X. Meng, and E. Liu (2007). J. Mater. Chem. 17, 1188.

    Article  CAS  Google Scholar 

  28. W. W. Chen, R. V. Nguyen, and C. J. Li (2009). Tetrahedron Lett. 50, 2895.

    Article  CAS  Google Scholar 

  29. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley (1998). Science. 280, 1253.

    Article  CAS  Google Scholar 

  30. A. V. Ellis and B. Ingham (2006). J. Magn. Magn. Mater. 302, 378.

    Article  CAS  Google Scholar 

  31. H. Emadi and A. Nemati Kharat (2013). Mater. Res. Bull. 48, 3994.

    Article  CAS  Google Scholar 

  32. R. D. Waldron (1955). Phys. Rev. 99, 1727.

    Article  CAS  Google Scholar 

  33. D. Michael, P. Mingos, and D. R. Baghurt (1991). Chem. Soc. Rev. 20, 1.

    Article  Google Scholar 

  34. Y. Shan, K. Chen, X. Yu, and L. Gao (2010). Appl. Surf. Sci. 257, 362.

    Article  CAS  Google Scholar 

  35. A. Mahmud, X. Bing Xiong, and A. Lavasanifar (2008). Eur. J. Pharm. Biopharm. 69, 923.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Tehran for their effort to provide financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nemati Kharat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouriabadi, H., Emadi, H. & Kharat, A.N. Superparamagnetic Fe3O4 Nanoparticles Decorated Multiwalled Carbon Nanotubes: Preparation via Cyclic Microwave Approach and Their Drug Release Behavior. J Clust Sci 27, 1017–1030 (2016). https://doi.org/10.1007/s10876-015-0906-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0906-6

Keywords

Navigation