Skip to main content
Log in

Two Organic–Inorganic Hybrids Assembled from Transition–Metal Complexes and Keggin-Type Silicotungstates

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

By introducing rigid aromatic N-ligands to the lacunary silicotungstate system under hydrothermal conditions, two new Keggin-type polyoxotungstate hybrids with copper–organic complexes [Cu(phen)(H2O)2]2[Cu(phen)2]2[α-SiW12O40]2·4H2O (1) and [Cu(4,4′-bpy)]3H[α-SiW12O40]·3 H2O (2) (phen = 1,10-phenanthroline, 4,4′-bpy = 4,4′-bipyridine) have been made and characterized by elemental analysis, IR spectra and single-crystal X-ray diffraction. The common architectural feature of 1 and 2 is that both comprise the plenary Keggin-type [α-SiW12O40]4− polyoxoanions modified by Cu–organic fragments containing various organic ligands. It should be pointed out that {[Cu(phen) (H2O)2][α-SiW12O40]}2+ and {[Cu(phen)2][α-SiW12O40]}2+ building units in 1 are alternately held together into an infinite 1-D chain fashion while the most striking characteristic of 2 is that two types of {–4,4′-bpy–Cu– 4,4′-bpy–Cu–}n 1-D polymeric chains are combined together by hexadentate [α-SiW12O40]4− polyoxoanions as the inorganic bridging ligands, giving birth to the aesthetic 3-D extended architecture. Moreover, electrochemical properties of 1 and 2 have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. V. Izarova, M. T. Pope, and U. Kortz (2012). Angew. Chem. Int. Ed. 51, 9492.

    Article  CAS  Google Scholar 

  2. Q. X. Han, C. He, M. Zhao, B. Qi, J. Y. Niu, and C. Y. Duan (2013). J. Am. Chem. Soc. 135, 10186.

    Article  CAS  Google Scholar 

  3. M. T. Pope and A. Müller Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  4. D. L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736.

    Article  CAS  Google Scholar 

  5. Y. C. Liu, F. C. Chun, S. T. Zheng, J. W. Zhao, and G. Y. Yang (2013). Dalton Trans. 42, 16676.

    Article  CAS  Google Scholar 

  6. Y. Wei, B. Xu, C. L. Barnes, and Z. Peng (2001). J. Am. Chem. Soc. 123, 4083.

    Article  CAS  Google Scholar 

  7. C. L. Lv, R. N. N. Khan, J. Zhang, J. J. Hu, J. Hao, and Y. G. Wei (2013). Chem. Eur. J. 19, 1174.

    Article  CAS  Google Scholar 

  8. S. T. Zheng and G. Y. Yang (2012). Chem. Soc. Rev. 41, 7623.

    Article  CAS  Google Scholar 

  9. P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.

    Article  Google Scholar 

  10. C. L. Hill (1998). Chem. Rev. 98, 1.

    Article  CAS  Google Scholar 

  11. D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.

    Article  CAS  Google Scholar 

  12. J. Hao, Y. Xia, L. S. Wang, L. Ruhlmann, Y. L. Zhu, Q. Li, P. C. Yin, Y. G. Wei, and H. Y. Guo (2008). Angew. Chem. Int. Ed. 47, 2626.

    Article  CAS  Google Scholar 

  13. B. S. Bassil, M. H. Dickman, I. Römer, B. Kammer, and U. Kortz (2007). Angew. Chem. Int. Ed. 46, 6192.

    Article  CAS  Google Scholar 

  14. U. Kortz, A. Tézé, and G. Hervé (1999). Inorg. Chem. 38, 2038.

    Article  CAS  Google Scholar 

  15. R. C. Howell, F. G. Perez, S. Jain, W. D. Horrocks, A. L. Rheingold, and L. C. Francesconi (2001). Angew. Chem. Int. Ed. 40, 4031.

    Article  CAS  Google Scholar 

  16. E. Cadot, M. A. Pilette, J. Marrot, and F. Sécheresse (2003). Angew. Chem. Int. Ed. 42, 2173.

    Article  CAS  Google Scholar 

  17. X. K. Fang, T. M. Anderson, and C. L. Hill (2005). Angew. Chem. Int. Ed. 44, 3540.

    Article  CAS  Google Scholar 

  18. J. W. Zhao, H. P. Jia, J. Zhang, S. T. Zheng, and G. Y. Yang (2007). Chem. Eur. J. 13, 10030.

    Article  CAS  Google Scholar 

  19. J. W. Zhao, J. Zhang, S. T. Zheng, and G. Y. Yang (2008). Chem. Commun. 44, 570.

    Article  Google Scholar 

  20. J. Thiel, C. Ritchie, C. Streb, D. L. Long, and L. Cronin (2009). J. Am. Chem. Soc. 131, 4180.

    Article  CAS  Google Scholar 

  21. K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi, and N. Mizuno (2008). Angew. Chem. Int. Ed. 47, 2407.

    Article  CAS  Google Scholar 

  22. U. Kortz, Y. P. Jeannin, A. Tézé, G. Hervé, and S. Isber (1999). Inorg. Chem. 38, 3670.

    Article  CAS  Google Scholar 

  23. S. G. Mitchell, P. I. Molina, S. Khanra, H. N. Miras, A. Prescimone, G. J. T. Cooper, R. S. Winter, E. K. Brechin, D. L. Long, R. J. Cogdell, and L. Cronin (2011). Angew. Chem. Int. Ed. 50, 9154.

    Article  CAS  Google Scholar 

  24. Z. M. Zhang, S. Yao, Y. G. Li, H. H. Wu, Y. H. Wang, M. Rouzières, R. Clérac, Z. M. Su, and E. B. Wang (2013). Chem. Commun. 49, 2515.

    Article  CAS  Google Scholar 

  25. M. Sadakane, M. H. Dickman, and M. T. Pope (2000). Angew. Chem. Int. Ed. 39, 16.

    Article  Google Scholar 

  26. J. P. Wang, J. W. Zhao, X. Y. Duan, and J. Y. Niu (2006). Cryst. Growth Des. 6, 507.

    Article  CAS  Google Scholar 

  27. S. Z. Li, D. D. Zhang, Y. Y. Guo, P. T. Ma, X. Y. Qiu, J. P. Wang, and J. Y. Niu (2012). Dalton Trans. 41, 9885.

    Article  CAS  Google Scholar 

  28. P. Mialane, L. Lisnard, A. Mallard, J. Marrot, E. A. Fidancev, P. Aschehoug, D. Vivien, and F. Sécheresse (2003). Inorg. Chem. 42, 2102.

    Article  CAS  Google Scholar 

  29. B. S. Bassil, M. H. Dickman, B. V. D. Kammer, and U. Kortz (2007). Inorg. Chem. 46, 2452.

    Article  CAS  Google Scholar 

  30. L. Ni, F. Hussain, B. Spingler, S. Weyeneth, and G. R. Patzke (2011). Inorg. Chem. 50, 4944.

    Article  CAS  Google Scholar 

  31. K. Suzuki, M. Sugawa, Y. J. Kikukawa, K. Kamata, K. Yamaguchi, and N. Mizuno (2012). Inorg. Chem. 51, 6953.

    Article  CAS  Google Scholar 

  32. W. L. Chen, Y. G. Li, Y. H. Wang, and E. B. Wang (2007). Eur. J. Inorg. Chem. 2007, 2216.

    Article  Google Scholar 

  33. Z. M. Zhang, Y. G. Li, W. L. Chen, E. B. Wang, and X. L. Wang (2008). Inorg. Chem. Commun. 11, 879.

    Article  CAS  Google Scholar 

  34. Z. M. Zhang, Y. G. Li, S. Yao, and E. B. Wang (2011). Dalton Trans. 40, 6475.

    Article  CAS  Google Scholar 

  35. S. Yao, J. H. Yan, Y. C. Yu, and E. B. Wang (2012). Inorg. Chem. Commun. 23, 70.

    Article  CAS  Google Scholar 

  36. H. H. Wu, S. Yao, Z. M. Zhang, Y. G. Li, Y. Song, Z. J. Liu, X. B. Han, and E. B. Wang (2013). Dalton Trans. 42, 342.

    Article  CAS  Google Scholar 

  37. B. Nohra, P. Mialane, A. Dolbecq, E. Rivière, J. Marrot, and F. Sécheresse (2009). Chem. Commun. 45, 2703.

    Article  Google Scholar 

  38. J. D. Compain, P. Mialane, A. Dolbecq, I. M. Mbomekallé, J. Marrot, F. Sécheresse, C. Duboc, and E. Rivière (2010). Inorg. Chem. 49, 2851.

    Article  CAS  Google Scholar 

  39. D. Y. Du, J. S. Qin, S. L. Li, Y. Q. Lan, X. L. Wang, and Z. M. Su (2010). Aust. J. Chem. 63, 1389.

    Article  CAS  Google Scholar 

  40. X. K. Fang, K. McCallum, H. D. Pratt III, T. M. Anderson, K. Dennisa, and M. Luban (2012). Dalton Trans. 41, 9867.

    Article  CAS  Google Scholar 

  41. H. Y. Zhao, J. W. Zhao, B. F. Yang, H. He, and G. Y. Yang (2013). CrystEngComm 15, 8186.

    Article  CAS  Google Scholar 

  42. H. J. Pang, C. J. Gómez-García, J. Peng, H. Y. Ma, C. J. Zhang, and Q. Y. Wu (2013). Dalton Trans. 42, 16596.

    Article  CAS  Google Scholar 

  43. S. W. Zhang, J. W. Zhao, P. T. Ma, H. N. Chen, J. Y. Niu, and J. P. Wang (2012). Cryst. Growth Des. 12, 1263.

    Article  CAS  Google Scholar 

  44. J. W. Zhao, J. Luo, L. J. Chen, J. Yuan, H. Y. Li, P. T. Ma, J. P. Wang, and J. Y. Niu (2012). CrystEngComm 14, 7981.

    Article  CAS  Google Scholar 

  45. J. Luo, C. L. Leng, L. J. Chen, J. Yuan, H. Y. Li, and J. W. Zhao (2012). Synth. Met. 162, 1558.

    Article  CAS  Google Scholar 

  46. S. W. Zhang, J. W. Zhao, P. T. Ma, J. Y. Niu, and J. P. Wang (2012). Chem. Asian J. 7, 966.

    Article  CAS  Google Scholar 

  47. J. Luo, J. W. Zhao, J. Yuan, Y. Z. Li, L. J. Chen, P. T. Ma, J. P. Wang, and J. Y. Niu (2013). Inorg. Chem. Commun. 27, 2713.

    Google Scholar 

  48. A. Tézé and G. Hervé (1977). Inorg. Chem. 16, 2115.

    Article  Google Scholar 

  49. G. M. Sheldrick SHELXS 97, program for crystal structure solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  50. G. M. Sheldrick SHELXL 97, program for crystal structure refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  51. J. W. Zhao, C. M. Wang, J. Zhang, S. T. Zheng, and G. Y. Yang (2008). Chem. Eur. J. 14, 9223.

    Article  CAS  Google Scholar 

  52. Z. M. Zhang, Y. G. Li, S. Yao, E. B. Wang, Y. H. Wang, and R. Clérac (2009). Angew. Chem. Int. Ed. 48, 1581.

    Article  CAS  Google Scholar 

  53. L. J. Chen, D. Y. Shi, J. W. Zhao, Y. L. Wang, P. T. Ma, and J. Y. Niu (2011). Inorg. Chem. Commun. 14, 1052.

    Article  CAS  Google Scholar 

  54. J. Y. Niu, Y. Shen, and J. P. Wang (2005). J. Mol. Struct. 733, 19.

    Article  CAS  Google Scholar 

  55. Y. Lu, Y. Xu, E. B. Wang, J. Lu, C. W. Hu, and L. Xu (2005). Cryst. Growth Des. 5, 257.

    Article  CAS  Google Scholar 

  56. M. X. Li, J. Du, J. P. Wang, and J. Y. Niu (2007). Inorg. Chem. Commun. 10, 1391.

    Article  CAS  Google Scholar 

  57. H. J. Pang, J. Peng, J. Q. Sha, A. X. Tian, P. P. Zhang, Y. Chen, and M. Zhu (2009). J. Mol. Struct. 922, 88.

    Article  CAS  Google Scholar 

  58. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B41, 244.

    Article  CAS  Google Scholar 

  59. C. D. Wu, C. Z. Lu, H. H. Zhuang, and J. S. Huang (2002). Inorg. Chem. 41, 5636.

    Article  CAS  Google Scholar 

  60. C. M. Liu, D. Q. Zhang, and D. B. Zhu (2005). Cryst. Growth Des. 5, 1639.

    Article  CAS  Google Scholar 

  61. K. T. Potts, C. P. Horwitz, A. Fessak, M. Keshavarz-K, K. E. Nash, and P. J. Toscano (1993). J. Am. Chem. Soc. 115, 10444.

    Article  CAS  Google Scholar 

  62. H. Jin, Y. F. Qi, E. B. Wang, Y. G. Li, C. Qin, X. L. Wang, and S. Chang (2006). Eur. J. Inorg. Chem. 2006, 4541.

    Article  Google Scholar 

  63. J. Q. Sha, J. Peng, A. X. Tian, H. S. Liu, J. Chen, P. P. Zhang, and Z. M. Su (2007). Cryst. Growth Des. 7, 2535.

    Article  CAS  Google Scholar 

  64. J. W. Zhao, Y. P. Song, P. T. Ma, J. P. Wang, and J. Y. Niu (2009). J. Solid. State Chem. 182, 1798.

    Article  CAS  Google Scholar 

  65. S. W. Zhang, J. W. Zhao, P. T. Ma, H. N. Chen, J. P. Wang, and J. Y. Niu (2012). Cryst. Growth Des. 12, 1263.

    Article  CAS  Google Scholar 

  66. C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot (1983). Inorg. Chem. 22, 207.

    Article  CAS  Google Scholar 

  67. X. L. Wang, E. B. Wang, Y. Lan, and C. W. Hu (2002). Electroanal 14, 1116.

    Article  CAS  Google Scholar 

  68. M. Sadakane and E. Stechhan (1998). Chem. Rev. 98, 219.

    Article  CAS  Google Scholar 

  69. N. Haraguchi, Y. Okaue, T. Isobe, and Y. Matsuda (1994). Inorg. Chem. 33, 1015.

    Article  CAS  Google Scholar 

  70. J. Wang Analytical Electrochemistry (VCH, New York, 1994).

    Google Scholar 

  71. Z. Han, Y. Zhao, J. Peng, Q. Liu, and E. Wang (2005). Electrochim. Acta 51, 218.

    Article  CAS  Google Scholar 

  72. Z. G. Han, Y. L. Zhao, J. Peng, Y. H. Feng, J. N. Yin, and Q. Liu (2005). Electroanal 17, 1097.

    Article  CAS  Google Scholar 

  73. P. P. Zhang, J. Peng, X. Q. Shen, Z. G. Han, A. X. Tian, H. J. Pang, J. Q. Sha, Y. Chen, and M. Zhu (2009). J. Solid State Chem. 182, 3399.

    Article  CAS  Google Scholar 

  74. Z. G. Han, Y. L. Zhao, J. Peng, Q. Liu, and E. B. Wang (2005). Electrochim. Acta. 51, 218.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (21101055, 213010 4 9, U130 4208), the Natural Science Foundation of Henan Province (12230 0 41010 6, 10230 0 410 093), the Foundation of State Key Laboratory of Structural Chemistry (20120 013), 2014 Special Foundation for Scientific Research Project of Henan University, 2012 Young Backbone Teachers Foundation from Henan Province and the Students Innovative Pilot Plan of Henan University (2013, 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wei Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Liu, JC., Shao, B. et al. Two Organic–Inorganic Hybrids Assembled from Transition–Metal Complexes and Keggin-Type Silicotungstates. J Clust Sci 26, 2005–2022 (2015). https://doi.org/10.1007/s10876-015-0899-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0899-1

Keywords

Navigation