Skip to main content
Log in

Synthesis and Characterization of Al(OH)3, Al2O3 Nanoparticles and Polymeric Nanocomposites

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Applying of the most toxic halogenated and aromatic flame retardants is limited with respect to the environmental requirements. Nontoxic Al(OH)3 nanoparticles were synthesized via a simple surfactant-free precipitation reaction at room temperature. The effect of various precipitation-agents on the morphology of the products was investigated. Al(OH)3 nanoparticles were added to the polysulfone and poly styrene (PS) matrices. Electron microscope images show excellent dispersion of aluminium hydroxide in PS matrix. Nanoparticles appropriately enhanced both thermal stability and flame retardant property of the polymeric matrices. The enhancement of flame retardancy is due to endothermic decomposition of Al(OH)3 that absorbs heat and simultaneously releases of water (makes combustible gases diluted and cold). Dispersed nanoparticles play the role of a barrier layer against flame, oxygen and polymer volatilization. Al(OH)3 was converted to Al2O3 and its photo-catalyst property in degradation three different organic dyes as pollutants was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Laoutid, L. Bonnaud, M. Alexandre, J. Lopez-Cuesta, and Ph. Dubois (2009). Mater. Sci. Eng. R 63, 100.

    Article  Google Scholar 

  2. D. Ghanbari, M. Salavati-Niasari, and M. Sabet (2013). Compos. B 45, 550.

    Article  CAS  Google Scholar 

  3. A. B. Morgan and C. A. Wilkie Flame Retardant Polymer Nanocomposite, Chapter 1 (Wiley, New Jersey, 2007).

    Book  Google Scholar 

  4. B. Y. Geng, J. Z. Ma, and J. H. You (2008). Cryst. Growth Des. 8, 1443.

    Article  CAS  Google Scholar 

  5. D. Ghanbari, M. Salavati-Niasari, and M. Sabet (2012). J. Clust. Sci. 23, 1081.

    Article  CAS  Google Scholar 

  6. B. Jia and L. Gao (2008). J. Phys. Chem. C 112, 666.

    Article  CAS  Google Scholar 

  7. D. Ghanbari, M. Salavati-Niasari, and M. Ghasemi-Kooch (2014). J. Ind. Eng. Chem. 20, 3970.

    Article  CAS  Google Scholar 

  8. X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu, and N. Guan (2009). J. Phys. Chem. C 113, 16002.

    Article  CAS  Google Scholar 

  9. S. Liu, J. Ying, X. Zhou, and X. Xie (2009). Mater. Lett. 63, 911.

    Article  CAS  Google Scholar 

  10. F. Gholamian, M. Salavati-Niasari, D. Ghanbari, and M. Sabet (2013). J. Clust. Sci. 24, 73.

    Article  CAS  Google Scholar 

  11. H. Wang, P. Fang, Z. Chen, and S. Wang (2007). Appl. Surf. Sci. 253, 8495.

    Article  CAS  Google Scholar 

  12. P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, and H. R. Shams (2013). J. Clust. Sci. 24, 1151.

    Article  CAS  Google Scholar 

  13. F. Gholamian, G. Nabiyouni, D. Ghanbari, R. Jalajerdi, and A. Aminifazl (2013). High Temp. Mater. Proc. 32, 125.

    Article  CAS  Google Scholar 

  14. W. Q. Cai, J. G. Yu, and M. Jaroniec (2010). J. Mater. Chem. 20, 4587.

    Article  CAS  Google Scholar 

  15. N. K. Renuka, A. V. Shijina, and A. K. Praveen (2012). Mater. Lett. 82, 42.

    Article  CAS  Google Scholar 

  16. Y. K. Park, E. H. Tadd, M. Zubris, and R. Tannenbaum (2005). Mater. Res. Bull. 40, 1506.

    Article  CAS  Google Scholar 

  17. F. Yaripour, Z. Shariatinia, S. Shariatinia, and A. Irandoukht (2015). Fuel 139, 40.

    Article  CAS  Google Scholar 

  18. A. A. Pechenkin, S. D. Badmaev, and V. D. Belyaev (2015). Appl. Catal. B 166, 535.

    Article  Google Scholar 

  19. T. K. Ghosh and N. N. Nair (2015). Surf. Sci. 632, 20.

    Article  CAS  Google Scholar 

  20. S. Y. Hosseini and M. R. K. Nikou (2014). J. Ind. Eng. Chem. 20, 4421.

    Article  CAS  Google Scholar 

  21. P. Manivasakan, A. Karthik, and V. Rajendran (2013). Powder Technol. 234, 84.

    Article  CAS  Google Scholar 

  22. X. Wu, B. Zhang, and Z. Hu (2013). Powder Technol. 239, 155.

    Article  CAS  Google Scholar 

  23. P. Jamshidi, D. Ghanbari, and M. Salavati-Niasari (2014). J. Ind. Eng. Chem. 20, 350.

    Article  Google Scholar 

  24. M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, and T. Gholami (2014). J. Clust. Sci. 25, 397.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of University of Kashan for providing financial support to undertake this work by Grant No (159271/295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, M., Ghanbari, D., Salavati-Niasari, M. et al. Synthesis and Characterization of Al(OH)3, Al2O3 Nanoparticles and Polymeric Nanocomposites. J Clust Sci 27, 25–38 (2016). https://doi.org/10.1007/s10876-015-0895-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0895-5

Keywords

Navigation