Skip to main content
Log in

Two Borate Supramolecular Frameworks Based on B4O5(OH)4 Cluster Units

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new tetraborates, namely [Li(H2O)4]2[Cu(H2O)6][Cu(H2O)5]2[B4O5(OH)4]4·4H2O (1) and [Cu(en)2(H2O)2][Cu(en)2(B(OH)3)2][B4O5(OH)4]2·H2O (2) have been made under solvothermal conditions and characterized by FT-IR spectroscopy, powder X-ray diffraction, single crystal X-ray diffraction and thermogravimetric analysis, respectively. 1: triclinic, Pī, a = 7.0400(2) Å, b = 7.8779(3) Å, c = 25.8958(11) Å, α = 90.827(3)º, β = 95.985(3)º, γ = 105.816(3)º, Z = 1. 2: monoclinic, P2/c, a = 12.5723(6) Å, b = 9.1508(5) Å, c = 15.9800(6) Å, β = 94.742(4)º, Z = 2. In structure 1, the B4O5(OH)4 clusters join together via H-bonding interactions to produce 3-D supramolecular framework with three types of channels located by the Cu(H2O)6, Cu(H2O)5 and Li(H2O)4 polyhedra, respectively. While in 2, the B4O5(OH)4 clusters link each other to form 2-D layers and then further pillared by Cu(en)2(B(OH)3)2 complexes via H-bonding interactions, resulting in 3-D supramolecular framework with hexagonal and rectangle channels, in which the rectangle channels are filled by Cu(H2O)2(en)2 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. D. Grice, P. C. Burns, and F. C. Hawthorne (1999). Can. Mineral. 37, 731.

    CAS  Google Scholar 

  2. M. S. Wang, G. C. Guo, W. T. Chen, G. Xu, W. W. Zhou, K. J. Wu, and J. S. Huang (2007). Angew. Chem. Int. Ed. 46, 3909.

    Article  CAS  Google Scholar 

  3. S. Wang, N. Ye, W. Li, and D. Zhao (2010). J. Am. Chem. Soc. 132, 8779.

    Article  CAS  Google Scholar 

  4. C. T. Chen, Y. B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, and L. H. Yu (1995). Nature. 373, 322.

    Article  CAS  Google Scholar 

  5. H. Wu, S. Pan, K. R. Poeppelmeier, H. Li, D. Jia, Z. Chen, X. Fan, Y. Yang, J. M. Rondinelli, and H. Luo (2011). J. Am. Chem. Soc. 133, 7786.

    Article  CAS  Google Scholar 

  6. P. C. Burns (1995). Can. Miner. 33, 1167.

    CAS  Google Scholar 

  7. H. Wu, H. Yu, Z. Yang, X. Hou, X. Su, S. Pan, K. R. Poeppelmeier, and J. M. Rondinelli (2013). J. Am. Chem. Soc. 135, 4215.

    Article  CAS  Google Scholar 

  8. Z. Y. Wu, P. Brandao, and Z. Lin (2012). Inorg. Chem. 51, 3088.

    Article  CAS  Google Scholar 

  9. C. T. Chen, S. Y. Luo, X. Y. Wang, G. L. Wang, X. H. Wen, H. X. Wu, X. Zhang, and Z. Y. Xu (2009). J. Opt. Soc. Am. B. 26, 1519.

    Article  CAS  Google Scholar 

  10. C. Heyward, C. McMillen, and J. Kolis (2012). Inorg. Chem. 51, 3956.

    Article  CAS  Google Scholar 

  11. M. Touboul, N. Penin, and G. Nowogrocki (2003). Solid State Sci. 5, 1327.

    Article  CAS  Google Scholar 

  12. G. Aka and A. Brenier (2003). Optical Materials 22, 89–94.

    Article  CAS  Google Scholar 

  13. C. Chen, B. Wu, A. Jiang, G. You (1985). Sci. Sin. Ser. B (Engl. Ed.) 28, 235.

  14. C. T. Chen, Y. C. Wu, A. D. Jiang, G. M. You, R. K. Li, and S. J. Lin (1989). J. Opt. Soc. Am. B. 6, 616.

    Article  CAS  Google Scholar 

  15. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai (1995). Appl. Phys. Lett. 67, 1818.

    Article  CAS  Google Scholar 

  16. Y. C. Wu, T. Sasaki, A. Yokotani, H. Tang, and C. T. Chen (1993). Appl. Phys. Lett. 62, 2614.

    Article  CAS  Google Scholar 

  17. A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein (1991). Appl. Phys. 52, 55.

    Article  Google Scholar 

  18. G. M. Wang, Y. Q. Sun, and G. Y. Yang (2004). J. Solid State Chem. 177, 4648.

    Article  CAS  Google Scholar 

  19. Z. E. Lin and G. Y. Yang (2011). Eur. J. Inorg. Chem. 26, 3857.

    Article  Google Scholar 

  20. C. Rong, Z. W. Yu, Q. Wang, S. T. Zheng, C. Y. Pan, F. Deng, and G. Y. Yang (2009). Inorg. Chem. 48, 3650.

    Article  CAS  Google Scholar 

  21. J. Zhou, W. H. Fang, C. Rong, and G. Y. Yang (2010). Chem. Eur. J. 16, 4852.

    Article  CAS  Google Scholar 

  22. G. M. Wang, J. H. Li, H. L. Huang, H. Li, and J. Zhang (2008). Inorg. Chem. 47, 5039.

    Article  CAS  Google Scholar 

  23. L. Z. Wu, L. Cheng, J. N. Shen, and G. Y. Yang (2013). CrystEngComm. 15, 4483.

    Article  CAS  Google Scholar 

  24. M. C. Liu, P. Zhou, H. G. Yao, S. H. Ji, R. C. Zhang, M. Ji, and Y. L. An (2009). Eur. J. Inorg. Chem. 31, 4622.

    Article  Google Scholar 

  25. A. K. Paul and S. Natarajan (2010). Crystal Growth & Design. 10, 765.

    Article  CAS  Google Scholar 

  26. Z. H. Liu, L. Q. Li, and W. J. Zhang (2006). Inorg. Chem. 45, 1430.

    Article  CAS  Google Scholar 

  27. K. Byrappa and M. Yoshimura Handbook of Hydrothermal Technology, Chapter 2: History of Hydrothermal Technology (Noyes publications, New york, 2001).

    Google Scholar 

  28. M. Li, J. Z. Chang, Z. L. Wang, and H. Z. Shi (2006). J. Solid State Chem. 179, 3265.

    Article  CAS  Google Scholar 

  29. S. H. Yang, G. H. Li, S. J. Tian, F. H. Liao, and J. H. Lin (2007). Crystal Growth & Design. 7, 1246.

    Article  CAS  Google Scholar 

  30. H. Y. Sung, M. M. Wu, and I. D. Williams (2000). Inorg. Chem. Comm. 3, 401.

    Article  CAS  Google Scholar 

  31. Y. Yang, Y. Wang, J. Zhu, R. B. Liu, J. Xu, and C. G. Meng (2011). Z. Anorg. Allg. Chem. 637, 735.

    Article  CAS  Google Scholar 

  32. Y. Yang, Y. Wang, J. Sun, M. Cui, and C. G. Meng (2011). Z. Anorg. Allg. Chem. 637, 729.

    Article  CAS  Google Scholar 

  33. R. Janda, G. Heller, and J. Z. Pickardt (1981). Kristall 154, 1.

    CAS  Google Scholar 

  34. L. X. Zhu, T. Yue, and S. Y. Gao (2003). J. Mol. Struct. 658, 215.

    Article  CAS  Google Scholar 

  35. J. G. Zhou, F. Y. Zhao, and Q. Yang (2006). Thermochim Acta. 448, 52.

    Article  CAS  Google Scholar 

  36. M. Touboul, N. Penin, and G. Nowogrocki (1999). J. Solid State Chem. 143, 260.

    Article  CAS  Google Scholar 

  37. G. M. Sheldrick, A program for the Siemens Area Detector ABSorption correction, University of Göttingen, 1997.

  38. G. M. Sheldrick SHELXS-97 Program for Solution of Crystal Structures (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  39. C. L. Christ and J. R. Clark (1977). Phys. Chem. Miner. 2, 59.

    Article  CAS  Google Scholar 

  40. C. Hormillosa, S. Healy, T. Stephen, I. D. Brown, Bond Valence Calculator, Version 2.0, 1993, Original at http://ccp14.sims.nrc.ca/ccp/web-mirrors/i_d_brown/.

  41. J. Krogh-Moe (1965). Phys. Chem. Glasses. 6, 46.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (nos. 91122028, 50872133 and 21201017), the NSFC of Distinguished Young Scholars (No. 20725101), and the 973 Program (Nos. 2014CB932101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yu Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Pan, R., He, H. et al. Two Borate Supramolecular Frameworks Based on B4O5(OH)4 Cluster Units. J Clust Sci 26, 1993–2003 (2015). https://doi.org/10.1007/s10876-015-0894-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0894-6

Keywords

Navigation