Skip to main content
Log in

All-Atom Molecular Dynamics Study of Four RADA 16-I Peptides: The Effects of Salts on Cluster Formation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

RADA 16-I is a synthetic amphiphilic peptide, composed of 16 amino acids, designed to self-assemble in a controlled way into fibrils and higher ordered structures depending on solvent condition. This peptide has many applications in tissue engineering and wound healing. We have studied the cluster formation of four RADA 16-I peptide chains in the presence of different concentrations of NaCl and CaCl2 as solvents, using all-atom molecular dynamics simulation. Nine independent simulations over 20 ns were performed. The results show that the fastest cluster formation rate occurs in the presence of 0.2 M NaCl following by water. In these simulations cluster formation doesn’t occur in the presence of CaCl2. It is also found that the cluster formation depends on two solvent-related factors: (a) salt concentration and (b) salt type. The effect of salts may act through changing the compactness and secondary structure of this peptide. In fact NaCl helps each peptide to adopt transitional expanded α-helical conformation in order to induce better interaction sites for self-assembly. The results gave insight into the effect of ionic strength in self-assembly mechanism of RADA 16-I in the bulk solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. M. Whitesides and M. Boncheva (2002). Proc. Natl. Acad. Sci. USA. 99, 4769.

    Article  CAS  Google Scholar 

  2. S. Cavalli, F. Albericio, and A. Kros (2010). Chem. Soc. Rev. 39, 241.

    Article  CAS  Google Scholar 

  3. S. Zhang (2002). Biotechnol. Adv. 20, 321.

    Article  CAS  Google Scholar 

  4. D. Thirumalai, D. K. Klimov, and R. I. Dima (2003). Curr. Opin. Struct. Biol. 13, 146.

    Article  CAS  Google Scholar 

  5. X. Zhao, F. Pan, and J. R. Lu (2010). Chem. Soc. Rev. 39, 3480.

    Article  CAS  Google Scholar 

  6. R. G. Ellis-Behnke, Y. X. Liang, D. K. Tay, P. W. Kau, G. E. Schneider, S. Zhang, W. Wu, and K. F. So (2006). Nanotechnol Biol Med. 2, 207.

    Article  CAS  Google Scholar 

  7. H. Yokoi, T. Kinoshita, and S. Zhang (2005). Proc. Natl. Acad. Sci. USA. 102, 8414.

    Article  CAS  Google Scholar 

  8. F. Gelain, D. Bottai, and S. Zhang (2006). PLoS One. 1, e119.

    Article  Google Scholar 

  9. M. Wu, Z. H. Yang, and X. Zhao (2010). J. Nanomater. 2010, 1.

    Article  Google Scholar 

  10. J. Kisiday, M. Jin, and A. J. Grodzinsky (2002). Proc. Natl. Acad. Sci. USA. 99, 9996.

    Article  CAS  Google Scholar 

  11. D. A. Narmoneva, O. Oni, and R. T. Lee (2005). Biomaterials. 26, 4837.

    Article  CAS  Google Scholar 

  12. L. R. Robinson, N. C. Fitzgerald, and D. L. Bissett (2005). Int. J. Cosmet. Sci. 27, 155.

    Article  CAS  Google Scholar 

  13. S. Y. Fung, H. Yang, and P. Chen (2008). PLoS One. 3, e1956.

    Article  Google Scholar 

  14. S. Zhang, L. Yan, and A. Rich (1999). Biomaterials. 20, 1213.

    Article  CAS  Google Scholar 

  15. J. P. Jung, J. Z. Gasiorowski, and J. H. Collier (2010). Biopolymers. 94, 49.

    Article  CAS  Google Scholar 

  16. Y. Hong, L. S. Lau, R. L. Legge, and P. Chen (2004). J. Adhes. 80, 913.

    Article  CAS  Google Scholar 

  17. Y. Hong, R. L. Legge, S. Zhang, and P. Chen (2003). Biomacromolecules. 4, 1433.

    Article  CAS  Google Scholar 

  18. L. Piculell and S. Nilsson (1990). Prog. Colloid Polymer Sci. 82, 198.

    Article  CAS  Google Scholar 

  19. E. B. Tu, G. Z. Ji, and X. K. Jiang (1997). Langmuir. 13, 4234.

    Article  CAS  Google Scholar 

  20. O. V. Borisov and E. B. Zhulina (2002). Macromolecules. 35, 4472.

    Article  CAS  Google Scholar 

  21. R. G. Ellis-Behnke, Y. X. Liang, S. W. You, D. K. Tay, S. Zhang, K. F. So, and G. E. Schneider (2006). Proc. Natl. Acad. Sci. USA. 103, 5054.

    Article  CAS  Google Scholar 

  22. M. López De La Paz, K. Goldie, J. Zurdo, E. Lacroix, C. M. Dobson, A. Hoenger, and L. Serrano (2002). Proc. Natl. Acad. Sci. USA. 99, 16052.

    Article  Google Scholar 

  23. T. J. Measey, R. Schweitzer-Stenner, V. Sa, and K. Kornev (2010). Macromolecules. 43, 7800.

    Article  CAS  Google Scholar 

  24. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl (2008). J. Chem. Theory Comput. 4, 435.

    Article  CAS  Google Scholar 

  25. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen (1995). J. Chem. Phys. 103, 8577.

    Article  CAS  Google Scholar 

  26. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans (1981). Intermol Forces 14, 331.

    Article  CAS  Google Scholar 

  27. W. Kabsch and C. Sander (1983). Biopolymers. 22, 2577.

    Article  CAS  Google Scholar 

  28. W. Humphrey, A. Dalkeand, and K. Schulten (1996). VMD: visual molecular dynamics. J. Mol. Graph 14, 33.

    Article  CAS  Google Scholar 

  29. S. Jun, Y. Hong, H. Imamura, B.-Y. Ha, J. Bechhoefer, and P. Chen (2004). Biophys. J. 87, 1249–1259.

    Article  CAS  Google Scholar 

  30. Z. Ye, H. Zhang, H. Luo, S. Wang, Q. Zhou, X. DU, C. Tang, L. Chen, J. Liu, Y. K. Shi, E. Y. Zhang, R. Ellis-Behnke, and X. Zhao (2008). Pept. Sci. 14, 152.

    Article  CAS  Google Scholar 

  31. M. Ghavami, M. Rezaeei, R. Ejtehadi, M. Lotfi, M. A. Shokrgoza, B. Abd Emamy, J. Raush, and M. Mahmoudi (2013). ACS Chem. Neurosci. 4, 375.

    Article  CAS  Google Scholar 

  32. W. Hoyer, T. Antony, D. Cherny, G. Heim, T. M. Jovin, and V. Subramaniam (2002). J. Mol. Biol. 322, 383.

    Article  CAS  Google Scholar 

  33. S. Zhang, T. Holmes, C. Lockshin, and A. Rich (1993). Proc. Natl. Acad. Sci. USA 90, (8), 3334.

    Article  CAS  Google Scholar 

  34. J. R. Williamson, M. K. Raghuraman, and T. R. Cech (1989). cell 59, 871.

    Article  CAS  Google Scholar 

  35. S. Jain and J. B. Udgaonkar (2010). Biochemistry. 49, (35), 7615.

    Article  CAS  Google Scholar 

  36. Y. Hong, M. D. Pritzker, R. L. Legge, and P. Chen (2005). Colloids Surf B Biointerfaces 20, 152.

    Article  Google Scholar 

  37. S. Zhang, C. Lockshin, A. Rich and T. Holmes (1997). US5670483 A.

  38. P. Arosio, M. Owczarz, H. Wu, A. Butté, and M. Morbidelli (2012). Biophys. J. 102, (7), 1617.

    Article  CAS  Google Scholar 

  39. C. N. Pace and J. M. Scholtz (1998). Biophys. J. 75, 422.

    Article  CAS  Google Scholar 

  40. E. G. Hutchinson and J. M. Thornton (1994). Protein Sci. 3, 2207.

    Article  CAS  Google Scholar 

  41. D. L. Minor and P. S. Kim (1994). Nature. 367, (6464), 660.

    Article  CAS  Google Scholar 

  42. Z. Luo, B. Akerman, S. Zhang, and B. Norden (2010). Soft Matter. 6, 2260.

    Article  CAS  Google Scholar 

  43. V. Azzarito, K. Long, N. S. Murphy, and A. J. Wilson (2013). Nat. Chem. 5, 161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asieh Aramvash.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramvash, A., Seyedkarimi, M.S. All-Atom Molecular Dynamics Study of Four RADA 16-I Peptides: The Effects of Salts on Cluster Formation. J Clust Sci 26, 631–643 (2015). https://doi.org/10.1007/s10876-014-0836-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0836-8

Keywords

Navigation