Skip to main content
Log in

Water Soluble Melanin of Streptomyces lusitanus DMZ3 Persuade Synthesis of Enhanced Bio-medically Active Silver Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Enhanced bio-medically active silver nanoparticles were produced from water soluble melanin of Streptomyces lusitanus DMZ3. Synthesis of silver nanoparticles within 80 s was facilitated by microwave radiation. Melanin silver nanoparticles produced in the range of 13–22 nm sizes were confirmed and characterized by UV–Vis spectrum, transmission electron microscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy analysis. Silver nanoparticles produced from water soluble melanin showed potential biomedical attributes. Promising antioxidant activity of melanin silver nanoparticles with 130 µg/mL IC50 (50 % inhibition concentration) and 82.5 µg/mL EC50 (50 % effective concentration) functional potentials were recorded following DPPH (2,2′diphenyl-1-picryldrazyl) method and phosphomolybdate assay respectively. These melanin silver nanoparticles were found to be potential cytotoxic agent with 0.34 µg/mL LC50 (50 % lethal concentration) employing brine shrimps. Water soluble melanin, explored in the study, naturally would be a strategic biological reducing agent to produce melanin silver nanoparticles with greater biomedical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. R. Crippa, V. Horak, G. Prota, P. Svoronos, and L. Wolfram Chemistry of Melanins: The Alkaloid, vol. 36 (Academic Press, New York, 1989), pp. 234–323.

    Google Scholar 

  2. A. Bell and M. H. Wheeler (1986). Annu. Rev. Phytopathol. 24, 411–451.

    Article  CAS  Google Scholar 

  3. P. Manivasagan, J. Venkatesan, K. Senthilkumar, K. Sivakumar, and S.-K. Kim (2013). Int. J. Biol. Macromol. 58, 263–274.

    Article  CAS  Google Scholar 

  4. A. J. Hamilton and B. L. Gomez (2002). J. Med. Microbiol. 51, (3), 189–191.

    CAS  Google Scholar 

  5. L. F. Gibson and A. M. George (1998). FEMS Microbiol. lett. 169, (2), 261–268.

    Article  CAS  Google Scholar 

  6. J. Pawelek, A. Chakraborty, M. Osber, and J. Bologna (1992). Pigment Cell Res. 5, 180.

    Article  Google Scholar 

  7. J. Gallas, M. Eisner, Melanin polyvinyl alcohol plastic laminates for optical applications, US Patent 7029758 (2006).

  8. Tyler Kokjohn, John Schrader, Isolated melanin-like substance and method for producing the same, US Patent 6090588 (2000).

  9. Raghukumar Seshagiri, Pratibha Jalmi, Pranali Bodke, A process for production of water soluble melanin using a strain of the fungus Gliocephalo trichum, Patent No. WO 2010064262 A2 (2010).

  10. Guy della-Cioppa, Stephen J. Garger Jr, G. Genadie, W. Sverlo, Thomas H. Turpen, Laurence K. Grill, Miles R. Chedekal, Melanin production by streptomyces, Patent: 5814495 (1998).

  11. D. N. Madhusudhan, B. B. Z. Mazhari, S. G. Dastager, and D. Agsar (2014). BioMed Res. Int. doi:10.1155/2014/306895.

    Google Scholar 

  12. A. Aghajanyan, A. Hambardzumyan, R. Hovsepyan, A. Asaturian, and A. Vardanyan Saghiyan (2005). Pigment Cell Res. 18, 130–135.

    Article  CAS  Google Scholar 

  13. S. Gurunathan, J. Han, J. H. Park, and J.-H. Kim (2014). Nanoscale Res. Lett. 9, 248. doi:10.1186/1556-276X-9-248.

    Article  Google Scholar 

  14. R. Bhat, S. Ganachari, R. Deshpande, G. Ravindra, and A. Venkatraman (2013). J. Clust. Sci. 24, 107–114.

    Article  CAS  Google Scholar 

  15. Wei Qian, Makoto Murakami, Yuki Ichikawa, Young Che, Stable colloidal gold nanoparticles with controllable surface modification and functionalization, US Patent US8697129 B2 (2014).

  16. S. K. Das, C. Dickinson, F. Lafir, D. F. Brougham, and E. Marsili (2012). Green Synth. doi:10.1039/c2gc16676c.

    Google Scholar 

  17. E. Hutter and J. H. Fendler (2004). Adv. Mater. 16, (19), 1685–1706.

    Article  CAS  Google Scholar 

  18. L. Y. Wang, L. J. Cai, D. Shen, Y. G. Feng, M. Chen, and D. J. Qian (2010). Prog. Chem. 22, (4), 580–592.

    CAS  Google Scholar 

  19. H. Xu, L. Zeng, S. Xing, Y. Xian, and L. Jin (2008). Electrochem. Commun. 10, (4), 551–554.

    Article  CAS  Google Scholar 

  20. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Coll. Surf. 28, 313–318.

    Article  CAS  Google Scholar 

  21. N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya (2007). Langmuir 23, 7113–7117.

    Article  CAS  Google Scholar 

  22. Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E. M. V. Hoek, H. Godwin, A. E. Nel, and J. I. Zink (2010). Environ. Sci. Tech. 44, (19), 7309–7314.

    Article  CAS  Google Scholar 

  23. A. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Colloids Surf. B. Biointerfaces 76, (1), 50–56.

    Article  CAS  Google Scholar 

  24. W. Raut Rajesh, R. Lakkakula Jaya, S. Kolekar Niranjan, D. Tendulkar Vijay, and B. Kashid Sahebrao (2009). Curr. Nanosci. 5, 117–122.

    Article  Google Scholar 

  25. S. Mondini, A. M. Ferretti, A. Puglisi, and A. Ponti (2012). Nanoscale 4, 5356–5372.

    Article  CAS  Google Scholar 

  26. P. Bersuder, M. Hole, and G. Smith (1998). J. Am. Oil Chemists’ Soc. 75, 181–187.

    Article  CAS  Google Scholar 

  27. M. Umamaheswari and T. K. Chatterjee (2008). Afr J. Tradit. Complement. Altern. Med. 5, (1), 61–73.

    CAS  Google Scholar 

  28. M. Oyaizu (1986). Jpn. J Nutr. 44, 307–315.

    Article  CAS  Google Scholar 

  29. B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin (1982). Planta Med. 45, (1), 31–34.

    Article  CAS  Google Scholar 

  30. M. Déciga-Campos, I. Rivero-Cruz, M. Arriaga-Alba, G. Castañeda-Corral, G. E. Angeles-López, A. Navarrete, and R. Mata (2007). J. Ethnopharmacol. 110, 334–342.

    Article  Google Scholar 

  31. M. Apte, D. Sambre, S. Gaikawad, S. Joshi, A. Bankar, A. R. Kumar, S. Zinjarde (2013). AMB Express. 3, 32.

  32. G. S. Kiran, A. Dhasayan, A. N. Lipton, J. Selvin, M. V. Arasu, and N. A. Al-Dhabi (2014). J. Nanobiotechnol. doi:10.1186/1477-3155-12-18.

    Google Scholar 

  33. D. Manikprabhu and K. Lingappa (2013). Bioinor. Chem. Appl. doi:10.1155/2013/341798.

    Google Scholar 

  34. D. J. Kim, K. -Y. Ju, J. -K. Lee (2012). Bull Korean Chem. Soc. 33, (11), 3788–3792.

  35. C. Ramteke, T. Chakrabarti, B. K. Sarangi, and R.-A. Pandey (2013). J. Chem. doi:10.1155/2013/278925.

    Google Scholar 

  36. D. Preetha, K. Prachi, A. Chirom, and R. Arun (2013). J. Nanotechnol. doi:10.1155/2013/598328.

    Google Scholar 

  37. S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan (2013). J. Clust. Sci. 24, 1081–1092.

    Article  CAS  Google Scholar 

  38. A. Mani, S. Seetha Lakshmi, and V. Gopal (2012). Int. J. Biol. Pharm. Res. 3, (4), 631–633.

    Google Scholar 

  39. A. K. Mittal, A. Kaler, U. C. Banerjee (2012). Nano Biomed. Eng. 4, (3), 118–124.

  40. S. Pisutthanan, P. Plianbangchang, N. Pisutthanan, S. Ruanruay, and O. Muanrit (2004). Naresuan Univ. J. 12, (2), 13–18.

    Google Scholar 

  41. A. Lagarto Parra, R. Silva Yhebra, I. Guerra Sardinas, and L. Iglesias Buela (2001). Phytomedicine 8, (5), 395–400.

    Article  Google Scholar 

  42. G. M. Sulaiman, W. H. Mohammed, T. R. Marzoog, A. A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad (2013). Asian Pac. J. Trop. Biomed. 3, (1), 58–63.

    Article  CAS  Google Scholar 

  43. C. Arulvasu, S. M. Jennifer, D. Prabhu, D. Chandhirasekar (2014). Sci. World J. doi:10.1155/2014/256919.

Download references

Acknowledgments

The Grant to carry out the present research work provided by the Department of Biotechnology (BT/PR13864/PID/06/580/2010, Dt. 05.08.2011), Government of India, New Delhi is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayanand Agsar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhusudhan, D.N., Agsar, D. & Sulochana, M.B. Water Soluble Melanin of Streptomyces lusitanus DMZ3 Persuade Synthesis of Enhanced Bio-medically Active Silver Nanoparticles. J Clust Sci 26, 1077–1089 (2015). https://doi.org/10.1007/s10876-014-0798-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0798-x

Keywords

Navigation