Skip to main content

Advertisement

Log in

Structural Features of Medium-Sized Ge n (n = 35, 40, 45, 50, 55 and 60) clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

By performing extensive search of the “compressing liquid” strategy together with the “genetic algorithm” approach, at the level of tight-binding(TB) potential model, the low-lying isomers of medium-sized Ge n (n = 35, 40, 45, 50, 55 and 60) are achieved. The selected lower-energy candidates from TB calculations are then fully optimized by the accurate first-principles calculations, the best candidates are identified. We find that the best candidates of germanium clusters undergo a structural transition from the prolate shape to the spherical structure in our concerned size range. This just corresponds to the observation of germanium clusters in ion mobility experiments. Furthermore, we reveal that the vibration entropy contributed to the free energy of an isomer which is useful for understanding the stability of the cluster at finite temperatures. As a result, the stability of the low-lying candidates at zero temperature is maintained at finite temperatures. In addition, the size-dependent HOMO–LUMO gaps have been briefly discussed in this paper. Our findings should be useful for future experiment investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. M. Hunter, J. L. Fye, M. F. Jarrold, and J. E. Bower (1994). Phys. Rev. Lett. 73, 2063.

    Article  CAS  Google Scholar 

  2. T. P. Martin and H. Schaber (1985). J. Chem. Phys. 83, 855.

    Article  CAS  Google Scholar 

  3. Truong Ba Tai and Minh Tho Nguyen (2011). J. Chem. Theory Comput. 7, 1119–1130.

    Article  Google Scholar 

  4. C. Jo and K. Lee (2000). J. Chem. Phys. 113, 7268.

    Article  CAS  Google Scholar 

  5. S. Bulusu, S. Yoo, and X. C. Zeng (2005). J. Chem. Phys. 122, 164305.

    Article  CAS  Google Scholar 

  6. S. Yoo and X. C. Zeng (2006). J. Chem. Phys. 124, 184309.

    Article  CAS  Google Scholar 

  7. J. Wang, G. Wang, and J. Zhao (2001). Phys. Rev. B 64, 205411.

    Article  Google Scholar 

  8. L. Wang and J. Zhao (2008). J. Chem. Phys. 128, 024302.

    Article  Google Scholar 

  9. L. Z. Zhao, W. C. Lu, W. Qin, Q. J. Zang, C. Z. Wang, and K. M. Ho (2008). Chem. Phy. Lett. 455, 225.

    Article  CAS  Google Scholar 

  10. L. Z. Zhao, W. C. Lu, and W. Qin (2008). J. Phys. Chem. A 112, 5815.

    Article  CAS  Google Scholar 

  11. W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho (2010). J. Chem. Phys. 132, 214509.

    Article  Google Scholar 

  12. W. Qin, W. C. Lu, L. Z. Zhao, Q. J. Zang, G. J. Chen, C. Z. Wang, and K. M. Ho (2009). J. Chem. Phys. 131, 124507.

    Article  Google Scholar 

  13. P. F. Li, Y. G. Zhang, X. L. Lei, and B. C. Pan (2012). Acta Phys Sin 53, 576.

    Google Scholar 

  14. P. F. Li and B. C. Pan (2012). J. phys. Condensed matter 24, 305802.

    Article  CAS  Google Scholar 

  15. R. L. Zhou, L. Y. Zhao, and B. C. Pan (2009). J. Chem. Phys. 131, 034108.

    Article  CAS  Google Scholar 

  16. R. L. Zhou and B. C. Pan (2007). Phys. Lett. A 368, 396.

    Article  CAS  Google Scholar 

  17. R. L. Zhou and B. C. Pan (2008). J. Chem. Phys. 128, 234302.

    Article  CAS  Google Scholar 

  18. Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

  19. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  21. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Article  CAS  Google Scholar 

  22. B. Liu, Z. Y. Lu, B. C. Pan, C. Z. Wang, and K. M. Ho (1998). J. Chem. Phys. 109, 9401.

    Article  CAS  Google Scholar 

  23. K. M. Ho, A. A. Shvartsburg, B. C. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature 392, 582.

    Article  CAS  Google Scholar 

  24. S. Yoo, J. Zhao, J. Wang, and X. C. Zeng (2004). J. Am. Chem. Soc. 126, 13845.

    Article  CAS  Google Scholar 

  25. S. Ma and G. Wang (2006). J. Molecular Structure: THEOCHEM 767, 75.

    Article  CAS  Google Scholar 

  26. L. L. Boyer (1979). Phys. Rev. Lett. 42, 584.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the support of the education department of Jiangxi Province (Grant No. GJJ14252) and the Key Laboratory of Photoelectronic and Telecommunication of Jiangxi Province (Grant No. 2011012). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province. This work has been carried out at National Supercomputer Center in Tianjin, and the calculations are performed on TianHe-1 (A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueling Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lei, X., Le, J. et al. Structural Features of Medium-Sized Ge n (n = 35, 40, 45, 50, 55 and 60) clusters. J Clust Sci 26, 1001–1010 (2015). https://doi.org/10.1007/s10876-014-0794-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0794-1

Keywords

Navigation