Skip to main content
Log in

Synthesis, Crystal Structure and Characterization of 3d–4d–4f Heterometallic Clusters Based on Super Tetrahedron Anions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Five heterometallic complexes were prepared in aqueous solution at 3–5 °C and characterized by elemental analyses, inductively coupled plasma analysis, IR spectra, UV–Vis spectra, powder X-ray diffraction and X-ray single-crystal diffraction. Complex 1–5 all contain 4d–4f super tetrahedron cluster anions, which are constructed by LnIII ions (Ln = NdIII, PrIII), [MoO4]2− and [Mo7O24]6− anions. Differences among 1–5 lie on the assembly of super tetrahedron anions by excess LnIII and TMII (TM = CoII, NiII, CuII or ZnII), which generates bigger cluster anions (complex 1–4) or anions with 1D infinite structure (complex 5). The assemble styles for synthons mentioned above show with capped style, head-to-head linking style or side-by-side linking style.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736.

    Article  CAS  Google Scholar 

  2. I. A. Weinstock (1988). Chem. Rev. 98, 113.

    Article  Google Scholar 

  3. A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.

    Article  CAS  Google Scholar 

  4. X.-X. Zheng, L. Zhang, J.-Y. Li, S.-Z. Lou, and J.-P. Cheng (2011). Chem. Commun. 47, 12325.

    Article  CAS  Google Scholar 

  5. I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.

    Article  CAS  Google Scholar 

  6. Y.-H. Guo and C.-W. Hu (2003). J. Clust. Sci. 4, 505.

    Article  Google Scholar 

  7. C. Ritchie, E. G. Moore, M. Speldrich, M. Speldrich, P. Kögerler, and C. Boskovic (2010). Angew. Chem. Int. Ed. 49, 7702.

    Article  CAS  Google Scholar 

  8. X. F. Zhang, X. L. He, Q. F. Huang, and S. Lin (2013). Adv. Mater. Res. 608–609, 1354.

    Google Scholar 

  9. S.-W. Zhang, J.-W. Zhao, P.-T. Ma, J.-Y. Niu, and J.-P. Wang (2012). Chem. Asian J. 7, 966.

    Article  CAS  Google Scholar 

  10. J.-W. Zhao, P.-T. Ma, J.-P. Wang, and J.-Y. Niu (2009). J. Clust. Sci. 20, 671.

    Article  CAS  Google Scholar 

  11. A. Müller, F. Peters, M. T. Pope, and D. Gatteschi (1998). Chem. Rev. 98, 239.

    Article  Google Scholar 

  12. G. Charron, A. Giusti, S. Mazerat, P. Mialane, A. Gloter, F. Miserque, B. Keita, L. Nadjo, A. Filoramo, E. Rivière, W. Wernsdorfer, V. Huc, J.-P. Bourgoin, and T. Mallah (2010). Nanoscale 2, 139.

    Article  CAS  Google Scholar 

  13. U. Kortz, A. Müller, J. V. Slageren, J. Schnack, N. S. Dalal, and M. Dressel (2009). Coord. Chem. Rev. 253, 2315.

    Article  CAS  Google Scholar 

  14. C. Streb, R. Tsunashima, D. A. Maclaren, T. McGlone, T. Akutagawa, T. Nakamura, A. Scandurra, B. Pignataro, N. Gadegaard, and L. Cronin (2009). Angew. Chem. Int. Ed. 48, 6490.

    Article  CAS  Google Scholar 

  15. J. T. Rhule, C. L. Hill, and D. A. Judd (1998). Chem. Rev. 98, 327.

    Article  CAS  Google Scholar 

  16. L. Wang, B.-B. Zhou, and J.-R. Liu (2013). Prog. Chem. 25, 1131.

    CAS  Google Scholar 

  17. H. N. Miras, J. Yan, D.-L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403.

    Article  CAS  Google Scholar 

  18. S. G. Mitchell, P. I. Molina, S. Khanra, H. N. Miras, A. Prescimone, G. J. T. Cooper, R. S. Winter, E. K. Brechin, D.-L. Long, R. J. Cogdell, and L. Cronin (2011). Angew. Chem. Int. Ed. 50, 9154.

    Article  CAS  Google Scholar 

  19. R. Cao Dissertation (Emory University, Atlanta, 2008).

    Google Scholar 

  20. J.-Y. Niu, S.-W. Zhang, H.-N. Chen, J.-W. Zhao, P.-T. Ma, and J.-P. Wang (2011). Cryst. Growth Des. 11, 3769.

    Article  CAS  Google Scholar 

  21. B. J. S. Johnson, S. A. Geers, W. W. Brennessel, V. G. Young, and A. Stein (2003). Dalton Trans. 24, 4678.

    Article  Google Scholar 

  22. A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet (2012). Chem. Soc. Rev. 41, 7605.

    Article  CAS  Google Scholar 

  23. K. Jiang, H.-X. Zhang, C. Shannon, and W. Zhen (2008). Langmuir 24, 3584.

    Article  CAS  Google Scholar 

  24. X.-L. Wang, Y.-F. Wang, G.-C. Liu, H.-L. Hu, and A.-X. Tian (2011). J. Clust. Sci. 22, 211.

    Article  CAS  Google Scholar 

  25. L.-B. Ni, B. Spingler, S. Weyeneth, and G. R. Patzke (2013). Eur. J. Inorg. Chem. 10–11, 1681.

    Article  Google Scholar 

  26. B. Li, J.-W. Zhao, S.-T. Zheng, and G.-Y. Yang (2008). Inorg. Chem. Commun. 11, 1288.

    CAS  Google Scholar 

  27. S.-T. Wu, B.-B. Deng, X.-L. Jiang, R.-H. Li, J.-B. Guo, F.-L. Lai, X.-H. Huang, and C.-C. Huang (2012). J. Solid State Chem. 196, 451.

    Article  CAS  Google Scholar 

  28. P. Gili, P. A. L.-Luis, A. Mederos, J. M. Arrieta, G. Germain, A. Castinēiras, and R. Carballo (1999). Inorg. Chim. Acta 295, 106.

    CAS  Google Scholar 

  29. C.-H. Tian, Z.-G. Sun, J. Li, X.-F. Zheng, H.-D. Liang, L.-C. Zhang, W.-S. You, and Z.-M. Zhu (2007). Inorg. Chem. Commun. 10, 757.

    Article  CAS  Google Scholar 

  30. D.-L. Long, P. Kogerler, L. J. Farrugia, and L. Cronin (2005). Dalton Trans. 8, 1372.

    Article  Google Scholar 

  31. X.-S. Qu, L. Xu, Y.-Y. Yang, F.-Y. Li, W.-H. Guo, L.-P. Jia, and X.-Z. Liu (2008). Struct. Chem. 19, 801.

    Article  CAS  Google Scholar 

  32. C.-B. Li (2007). Acta Crystallogr. E 63, m1911.

    Article  CAS  Google Scholar 

  33. U. Turpeinen, I. Mutikainen, M. Klinga, and R. Hamalainen (2001). Z. Kristallogr. New Cryst. Struct. 216, 515.

    CAS  Google Scholar 

  34. M. Klinga, U. Turpeinen, and R. Hämäläinen (2011). Z. Kristallogr. New Cryst. Struct. 216, 132.

    Google Scholar 

  35. K. Burgemeister, D. Drewes, E. M. Limanski, I. Küper, and B. Krebs (2004). Eur. J. Inorg. Chem. 13, 2690.

    Article  Google Scholar 

  36. G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.

    Article  CAS  Google Scholar 

  37. J. Azevedok, J. Coelho, G. Hungerford, and N. S. Hussain (2010). Physica B 405, 4696.

    Article  Google Scholar 

  38. V. N. Rain, B. N. R. Sekhar, P. Tiwari, R. J. Kshirsagar, and S. K. Deb (2011). J. Non-Cryst. Solids 357, 3757.

    Article  Google Scholar 

  39. K. Anita and N. R. Singh (2011). Spectrochim. Acta A 81, 117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thr Authors thank the financial support from the National Natural Science Foundation of China (21001026 and 61008040), the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (20110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ting Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, ST., Lu, SM., Tang, HL. et al. Synthesis, Crystal Structure and Characterization of 3d–4d–4f Heterometallic Clusters Based on Super Tetrahedron Anions. J Clust Sci 25, 1413–1424 (2014). https://doi.org/10.1007/s10876-014-0718-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0718-0

Keywords

Navigation