Skip to main content
Log in

Nanosized TiO2 as a Recyclable Heterogeneous Catalyst for the Synthesis of Tetrahydrobenzo[b]pyran Derivatives

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An electrochemical reduction method was used for the preparation of TiO2 nanoparticles in which agglomeration with formation of undesired metal powders is prevented by the presence of ammonium stabilizers. These synthesized nanoparticles were characterized by UV–Visible, XRD, SEM–EDS and TEM analysis techniques. These synthesized nanoparticles of TiO2 were tested as heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyran derivative using three components reaction of aromatic aldehyde, dimedione and malononitrile by simply stirring at room temperature in a solvent free condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme. 1
Scheme. 2

Similar content being viewed by others

References

  1. H. M. Marvaniya, K. N. Modi, and D. J. Sen (2011). Int. J. Drug Dev. Res. 3, (2), 34.

    CAS  Google Scholar 

  2. D. Astruc (2007). Inorg. Chem. 46, 1884.

    Article  CAS  Google Scholar 

  3. L.-S. Zhong, J.-S. Hu, Z.-M. Cui, L.-J. Wan, and W.-G. Song (2007). Chem. Mater. 19, 4557.

    Article  CAS  Google Scholar 

  4. J. F. Alonso and M. Yus (2008). Pure Appl. Chem. 80, (5), 1005.

    Article  CAS  Google Scholar 

  5. D. Astruc (2008). Nanopart. Catal. 1.

  6. L. Djakovitch, K. Koehler, and J. G. de Vries (2008). Nanopart. Catal. 303.

  7. J. Durand, E. Teuma, and M. Gomez (2008). Eur. J. Inorg. Chem. 3577.

  8. A. Roucoux, J. Schulz, and H. Patin (2002). Chem. Rev. 102, 3757.

    Article  CAS  Google Scholar 

  9. D. Herna′ndez-Santos, M. B. Gonza′lez-Garcı′a, and A. C. Garcia (2002). Metal-nanoparticles based electroanalysis. Electroanalysis 14, 1225.

    Article  Google Scholar 

  10. H. H. Kung, Surface Chemistry and Catalysis (Amsterdam, Elsevier, 1989), p. 45.

  11. V. E. Henrich, and P. A. Cox, The surface science of metal oxides (Cambridge University Press, Cambridge, 1994), p. 464.

  12. C. Noguera, Physics and chemistry at oxide surface (Cambridge University Press, Cambridge, 1996).

  13. M. B. Gawande, R. K. Pandey, and R. V. Jayaram (2012). Catal. Sci. Technol. 2, 1113.

    Article  CAS  Google Scholar 

  14. M. L. Kantam, S. Laha, J. Yadav, et al. (2006). Tetrahedron Lett. 47, 6213.

    Article  CAS  Google Scholar 

  15. M. H. Sarvari (2007). Acta Chim. Slov. 54, 354.

    Google Scholar 

  16. J. L. Ropero-Vega, A. Aldana-Pe′reza, R. Go′mez, et al. (2010). Appl. Catal. A 379, 24.

    Article  CAS  Google Scholar 

  17. M. Z. Kassaee, R. Mohammadi, H. Masrouri, et al. (2011). Chin. Chem. Lett. 22, 1203.

    CAS  Google Scholar 

  18. F. Shirini, M. A. Khoshdel, M. Abedini, et al. (2011). Chin. Chem. Lett. 22, 1211.

    CAS  Google Scholar 

  19. F. Shirini, S. V. Atghia, and M. AlipourKhoshdel (2011). Iran J. Catal. 1, 93.

    Google Scholar 

  20. S. M. Sajadi, M. Naderi, and S. Babadoust (2011). Nat. Sci. Res. 1, 10.

    Google Scholar 

  21. S. Abdolmohammadiccin (2012). Chin. Chem. Lett. 23, 1003.

    Article  Google Scholar 

  22. W. O. Foye (1991). Prinicipi di Chimica Farmaceutica Piccin, Padova, Italy, 416.

  23. L. Weber (2002). Curr. Med. Chem. 9, 1241.

    Article  Google Scholar 

  24. G. Pandey, R. P. Singh, A. Gary, and V. K. Singh (2005). Tetrahedron Lett. 46, 2137.

    Article  CAS  Google Scholar 

  25. L. L. Andreani and E. Lapi (1960). Boll. Chim. Farm. 99, 583.

    Google Scholar 

  26. L. Bonsignore, G. Loy, D. Secci, and A. Calignano (1993). Eur. J. Med. Chem. 28, 517.

    Article  CAS  Google Scholar 

  27. I. Devi and P. J. Bhuyan (2004). Tetrahedron Lett. 45, 8625.

    Article  CAS  Google Scholar 

  28. S. Hatakeyama, N. Ochi, H. Numata, and S. Takano (1988). J. Chem. Soc. Chem. Commun. 1202.

  29. C. S. Konkoy, D. B. Fick, X. Cai, S. X. Lan, N. C. Keana, J. F. W. PCT Appl. WO 0075123 (2000) Chem. Abstr. 2001, 134, 29313a.

  30. S. J. Tu, H. Jiang, Q. Y. Zhuang, C. B. Miu, D. Q. Shi, X. S. Wang, and Y. Gao (2003). Chin. J. Org. Chem. 23, (5), 488.

    CAS  Google Scholar 

  31. T. S. Jin, A. Q. Wang, F. Shi, L. S. Han, L. B. Liu, and T. S. Li (2006). ARKIVOC xiv, 78.

    Article  Google Scholar 

  32. S. Kamaljit, S. Jasbir, and S. Harjit (1996). Tetrahedron 52, 14273.

    Article  Google Scholar 

  33. S. J. Tu, Y. Gao, C. Guo, D. Shi, and Z. Lu (2002). Synth. Commun. 32, 2137.

    Article  CAS  Google Scholar 

  34. S. J. Tu, H. Jiang, Q. Y. Zhuang, C. B. Miu, D. Q. Shi, X. S. Wang, and Y. Gao (2003). Chin. J. Org. Chem. 23, 488.

    CAS  Google Scholar 

  35. S. Abdolmohammadi and S. Balalaie (2007). Tetrahedron Lett. 48, 3299.

    Article  CAS  Google Scholar 

  36. M. Saha and A. Kumar Pal (2012). Adv. Nanopart. 1, 61.

    Article  Google Scholar 

  37. L. Fotouhi, M. M. Heravi, A. Fatahi, and K. Bakhtiari (2007). Tetrahedron Lett. 48, 5379.

    Article  CAS  Google Scholar 

  38. L. X. Zian, Y. Huang, Y. Q. Li, and W. J. Zheng (2008). Monatsh. Chem. 139, 129.

    Article  Google Scholar 

  39. R. S. Bhosale, C. V. Magar, K. S. Solanke, S. B. Mane, S. S. Choudhary, and R. P. Pawar (2007). Synth. Commun. 37, 4353.

    Article  CAS  Google Scholar 

  40. M. Seifi and H. Sheibani (2008). Catal. Lett. 126, 275.

    Article  CAS  Google Scholar 

  41. Jia Zheng and Yi-Qun Li (2011). Arch. Appl. Sci. Res. 3, (2), 381.

    CAS  Google Scholar 

  42. R. Hekmatshoar, S. Majedi, and K. Bakhtiari (2008). Catal. Commun. 9, 307.

    Article  CAS  Google Scholar 

  43. D. Fang, H. B. Zhang, and Z. L. Liu (2010). J. Heterocycl. Chem. 47, 63.

    CAS  Google Scholar 

  44. M. T. Reetz and W. Helbig (1994). J. Am. Chem. Soc. 116, 740.

    Google Scholar 

  45. S. Rathod, B. Arbad, and M. Lande (2010). Chin. J. Catal. 31, 631.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad and UGC-SAP-DRS-1 scheme New Delhi for providing the laboratory facility. One of the author (ASR) is thankful for financial assistance from UGC Major Research Project, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali S. Rajbhoj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandgaonker, P.L., Jadhav, S., Gaikwad, S.T. et al. Nanosized TiO2 as a Recyclable Heterogeneous Catalyst for the Synthesis of Tetrahydrobenzo[b]pyran Derivatives. J Clust Sci 25, 483–493 (2014). https://doi.org/10.1007/s10876-013-0626-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0626-8

Keywords

Navigation