Skip to main content
Log in

Adsorption of NO2 on Small Silver Clusters with Copper Impurity: A Density Functional Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed to investigate the structural and energetic properties of NO2 adsorption on small bimetallic Ag n Cu m clusters (n + m ≤ 5). Generally NO2 is adsorbed in bridge configuration. The adsorbates prefer Cu sites when both Ag and Cu co-exist in the clusters. The adsorption energies and the dissociation energies of the complex clusters increase as the Cu content increases for the given cluster size. Our calculation suggests that the bimetallic Ag n Cu m may react with NO2 dissociatively by way of Ag atom, Ag2 or AgCu loss. The N–O vibrational properties of the complex clusters were also discussed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Sumiya, H. He, A. Abe, N. Takezawa, and K. Yoshida (1998). J. Chem. Soc. Faraday Trans. 94, 2217.

    Article  CAS  Google Scholar 

  2. M. Valden, X. Lai, and D. W. Goodman (1998). Science 281, 1647.

    Article  CAS  Google Scholar 

  3. F. Boccuzzi and A. Chiorino (2000). J. Phys. Chem. B 104, 5414.

    Article  CAS  Google Scholar 

  4. A. M. Lamsabhi, M. Alcamí, O. Mó, M. Yáñez, J. Tortajada, and J. Y. Salpin (2007). ChemPhysChem 8, 181.

    Article  CAS  Google Scholar 

  5. S. Sumiya, M. Saito, H. He, Q. C. Feng, N. Takezawa, and K. Yoshida (1998). Catal. Lett. 50, 87.

    Article  CAS  Google Scholar 

  6. S. Kameoka, T. Chafik, Y. Ukisu, and T. Miyadera (1998). Catal. Lett. 55, 211.

    Article  CAS  Google Scholar 

  7. F. Boccuzzi, S. Coluccia, G. Martra, and N. Ravasio (1999). J. Catal. 184, 316.

    Article  CAS  Google Scholar 

  8. A. Citra, X. Wang, and L. Andrews (2002). J. Phys. Chem. A 106, 3287.

    Article  Google Scholar 

  9. A. Sultana, M. Haneda, T. Fujitani, and H. Hamada (2007). Catal. Lett. 114, 96.

    Article  CAS  Google Scholar 

  10. P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dĕdeček, K. Arve, and B. Wichterlová (2005). J. Catal. 232, 302.

    Article  CAS  Google Scholar 

  11. J. P. Breen, R. Burch, C. Hardacre, and C. J. Hill (2005). J. Phys. Chem. B 109, 4805.

    Article  CAS  Google Scholar 

  12. S. Zhao, Y.-L. Ren, J. Wang, and W. P. Yin (2009). J. Phys. Chem. A 113, 1075.

    Article  CAS  Google Scholar 

  13. H. Grönbeck, A. Hellman, and A. Gavrin (2007). J. Phys. Chem. A 111, 6062.

    Article  Google Scholar 

  14. X. Ding, Z. Li, J. Yang, J. G. Hou, and Q. Zhu (2004). J. Chem. Phys. 121, 2558.

    Article  CAS  Google Scholar 

  15. X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, and L. S. Wang (2001). Science 291, 859.

    Article  CAS  Google Scholar 

  16. S. Shetty, S. Pal, and D. G. Kanhere (2003). J. Chem. Phys. 118, 7288.

    Article  CAS  Google Scholar 

  17. V. E. Matulis and O. A. Ivaskevich (2006). Comput. Mater. Sci. 35, 268.

    Article  CAS  Google Scholar 

  18. S. Chrétien, M. S. Gordon, and H. Metiu (2004). J. Chem. Phys. 121, 9931.

    Article  Google Scholar 

  19. Q. Ge, C. Song, and L. Wang (2006). Comput. Mater. Sci. 35, 247.

    Article  CAS  Google Scholar 

  20. C. Song, Q. Ge, and L. Wang (2005). J. Phys. Chem. B 109, 22341.

    Article  CAS  Google Scholar 

  21. S. Zhao, Y. L. Ren, J. J. Wang, and W. P. Yin (2010). J. Phys. Chem. A 114, 4917.

    Article  CAS  Google Scholar 

  22. A. M. Joshi, W. N. Delgass, and K. T. Thomson (2006). J. Phys. Chem. B 110, 23373.

    Article  CAS  Google Scholar 

  23. M. M. Sadek and L. Wang (2006). J. Phys. Chem. A 110, 14306.

    Article  Google Scholar 

  24. M. Neumaier, F. Weigend, O. Hampe, and M. M. Kappes (2008). Faraday Discuss. 138, 393.

    Article  CAS  Google Scholar 

  25. D. Y. Wu, B. Ren, and Z. Q. Tian (2006). ChemPhysChem. 7, 619.

    Article  CAS  Google Scholar 

  26. G. A. Bishea, N. Marak, and M. D. Morse (1991). J. Chem. Phys. 95, 5618.

    Article  CAS  Google Scholar 

  27. D. A. Kilimis and D. G. Papageorgiou (2010). Eur. Phys. J. D 56, 189.

    Article  CAS  Google Scholar 

  28. X. Lou, H. Gao, W. Wang, C. Xu, H. Zhang, and Z. Zhang (2010). J. Mol. Struct. (Theochem.) 959, 75.

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03 (Gaussian, Inc., Pittsburgh, 2003).

    Google Scholar 

  30. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.

    Article  CAS  Google Scholar 

  31. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Article  CAS  Google Scholar 

  32. K. P. Huber and G. Herzberg Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (VanNostrand, New York, 1979).

    Google Scholar 

  33. S. Zhao, Z. H. Li, W. N. Wang, and K. N. Fan (2005). J. Chem. Phys. 122, 144701.

    Article  Google Scholar 

  34. V. Bonačić-Koutecký, J. Burad, R. Mitrić, M. Ge, G. Zampella, and P. Fantucci (2002). J. Chem. Phys. 117, 3120.

    Article  Google Scholar 

  35. V. Beutel, H. G. Krämer, G. L. Bhale, M. Kuhn, K. Weyers, and W. Demtröder (1993). J. Chem. Phys. 98, 2699.

    Article  CAS  Google Scholar 

  36. R. A. Rohlfing and J. J. Valentini (1986). J. Chem. Phys. 84, 6560.

    Article  CAS  Google Scholar 

  37. J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.

    Article  CAS  Google Scholar 

  38. L. Cheng and Q. Ge (2008). J. Phys. Chem. C 112, 16924.

    Article  CAS  Google Scholar 

  39. D. Mei, Q. Ge, J. Szanyi, and C. H. F. Peden (2009). J. Phys. Chem. C 113, 7779.

    Article  CAS  Google Scholar 

  40. M. Neumaier, F. Weigend, O. Hampe, and M. M. Kappes (2006). J. Chem. Phys. 125, 104308.

    Article  Google Scholar 

  41. Y. Zhao, Z. Li, and J. Yang (2009). Phys. Chem. Chem. Phys. 11, 2329.

    Article  CAS  Google Scholar 

  42. S. Zhao, Y.-L. Ren, Y.-L. Ren, J. J. Wang, and W. P. Yin (2010). J. Mol. Struct. (Theochem.) 955, 66.

    Article  CAS  Google Scholar 

  43. S. Zhao, Y.-L. Ren, Y.-L. Ren, J. J. Wang, and W. P. Yin (2011). Comput. Theor. Chem. 964, 298.

    Article  CAS  Google Scholar 

  44. F. Viñes, A. Desikusumastuti, T. Staudt, A. Görling, J. Libuda, and K. N. Neyman (2008). J. Phys. Chem. C 112, 16539.

    Article  Google Scholar 

  45. A. Fielicke, G. V. Helden, G. Meijer, B. Simard, and D. M. Rayner (2005). Phys. Chem. Chem. Phys. 7, 3906.

    Article  CAS  Google Scholar 

  46. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, Inc., Boca Raton, 1990–1991), 71st edn.

Download references

Acknowledgments

The project was supported by the Outstanding Talent Program of Henan Province (084200510015) and the Fund for Doctorates of Henan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianJi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Ren, Y., Lu, W. et al. Adsorption of NO2 on Small Silver Clusters with Copper Impurity: A Density Functional Study. J Clust Sci 23, 1039–1048 (2012). https://doi.org/10.1007/s10876-012-0493-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0493-8

Keywords

Navigation