Skip to main content
Log in

Cation Dependent Formation of Hybrid Organic–Inorganic Frameworks Based on the Strandberg-Type Polyanion [(O2CCH2PO3)2Mo5O15]6− and Cu2+ Ions

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We present the first examples of materials based on the Strandberg type polyanion [(O2CCH2PO3)2Mo5O15]6−, linked by Cu2+ centers via coordination to the carboxylate functions of the polyanion. Simple one-pot reaction of Rb4KNa[(O2CCH2PO3)2Mo5O15]·H2O with CuCl2·2H2O in aqueous acidic media followed by crystallization resulted in the three hybrid organic–inorganic materials {K2.6Rb1.4[(PO3CH2CO2)2Mo5O15Cu(H2O)3]·7H2O} n (KRb-1), {Na2Cs3[(PO3CH2CO2)2Mo5O15(Cu(H2O)2Cl)]·6H2O} n (NaCs-2) and {Na2.75Rb1.25[(PO3CH2CO2)2Mo5O15Cu(H2O)3]·9H2O} n (NaRb-3), which were characterized by single-crystal X-ray diffraction, IR, TGA and elemental analysis. All three compounds are 1:1 polymers of the polyanion and the Cu2+ centers are all five-coordinate with two carboxylate oxygens in a trans fashion. However, the chains in KRb-1, NaCs-2 and NaRb-3 are packed differently along b leading to different solid state structures, indicating an important role of the alkali counter cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. (a) S. Kitagawa, R. Kitaura, and S. -i. Noro (2004). Angew Chem. Int. Ed. 43, 2334. (b) A. K. Cheetham, G. Férey, and T. Loiseau (1999). Angew Chem. Int. Ed. 38, 3268. (c) S. Kitagawa, S.-i. Noro, and T. Nakamura (2006). Chem. Commun. 701. (d) C. Janiak (2003). Dalton Trans. 2781. (e) N. R. Champness (2006). Dalton Trans. 877. (f) O. M. Yaghi, G. Li, and H. Li (1995). Nature 378, 703. (g) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. Okeeffe, and O. M. Yaghi (2001). Acc. Chem. Res. 34, 319. (h) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, and J. D. Cashion (2002). Science 298, 1762. (i) J. Y. Lu (2003). Coord. Chem. Rev. 246, 327. (j) K. Pavani, A. Ramanan, and M. S. Whittingham (2006). J. Mol. Struct. 796, 179. (k) B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe, and O. M. Yaghi (2000). J. Am. Chem. Soc. 122, 11559. (l) O. M. Yaghi, H. Li, and T. L. Groy (1996). J. Am. Chem. Soc. 118, 9096. (m) S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams (1999). Science 283, 1148

  2. (a) M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983). (b) M. T. Pope and A. Müller (1991). Angew. Chem. 103, 56 (Angew. Chem. Int. Ed. 30, 34). (c) M. T. Pope and A. Müller (eds.), Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer, Dordrecht, 1994). (d) C. L. Hill (ed.), Chemical Reviews, Polyoxometalates (1998). (e) M. T. Pope and A. Müller (eds.), Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001). (f) T. Yamase and M. T. Pope (eds.), Polyoxometalate Chemistry for Nano-Composite Design (Kluwer, Dordrecht, 2002). (g) M. T. Pope (2003). Comp. Coord. Chem. II 4, 635. (h) C. L. Hill (2003). Comp. Coord. Chem. II 4, 679. (i) J. J. Borrás-Almenar, E. Coronado, A. Müller, and M. T. Pope (eds.), Polyoxometalate Molecular Science (Kluwer, Dordrecht, 2004). (j) N. Casañ-Pastor and P. Gomez-Romero (2004). Fron. Biosci. 9, 1759. (k) J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi (1998). Chem. Rev. 98, 327

  3. Strandberg R. (1973). Acta Chem. Scand 27:1004

    Article  CAS  Google Scholar 

  4. (a) B. Hedman (1973). Acta Chem. Scand. 27, 3335. (b) W. Kwak, M. T. Pope, and T. F. Scully (1975). J. Am. Chem. Soc. 97, 5753. (c) J. K. Stalick and C. O. Quicksall (1976). Inorg. Chem. 15, 1577. (d) B. Hedman and R. Strandberg (1979). Acta Cryst. B35, 278. (e) L. Pettersson, I. Andersson, and L.-O. Öhman (1985). Acta Chem. Scand. A39, 53. (f) L. Pettersson, I. Andersson, and L.-O. Öhman (1986). Inorg. Chem. 25, 4726. (g) A. Yagasaki, I. Andersson, and L. Pettersson (1987). Inorg. Chem. 26, 3926. (h) T. Ozeki, H. Ichida, H. Miyamae, and Y. Sasaki (1988). Bull. Chem. Soc. Jpn. 61, 4455. (i) D.-G. Lyxell and R. Strandberg (1988). Acta Cryst. C44, 1535. (j) D.-G. Lyxell, R. Strandberg, D. Boström, and L. Pettersson (1991). Acta Chem. Scand. 45, 681. (k) D.-G. Lyxell, D. Boström, M. Hashimoto, and L. Pettersson (1998). Acta Chem. Scand. 52, 425

  5. Kortz U., Marquer C., Thouvenot R., Nierlich M. (2003). Inorg. Chem. 42:1158

    Article  CAS  Google Scholar 

  6. (a) J. Lu, Y. Xu, N. K. Goh, and L. S. Chia (1998). Chem. Commun. 2733. (b) J. Weng, M. Hong, Y. Liang, Q. Shi, and R. Cao (2002). J. Chem. Soc., Dalton Trans. 289. (c) Y. Lu, Y. Li, E. Wang, J. Lu, L. Xu, and R. Clerac (2005). Eur. J. Inorg. Chem. 1239. (d) Y. Lu, J. Lu, E. Wang, Y. Guo, X. Xu, and L. Xu (2005). J. Mol. Struct. 740, 159. (e) E. Burkholder and J. Zubieta (2001). Chem. Commun. 2056

  7. (a) C. R. Mayer, J. Marrot, and F. Sécheresse (2004). J. Mol. Struct. 704, 59. (b) M. Inoue and T. Yamase (1996). Bull. Chem. Soc Jap. 69, 2863. (c) M. P. Lowe, J. C. Lockhart, W. Clegg, and K. A. Fraser (1994). Angew. Chem., Int. Ed. 33, 451. (d) W. T. A. Harrison, L. L. Dussack, A. J. Jacobson (1997). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 53, 856. (e) M. P. Lowe, J. C. Lockhart, G. A. Forsyth, W. Clegg, and K. A. Fraser (1995). J. Chem. Soc., Dalton Trans. 145

  8. Burkholder E., Golub V., O’Connor C. J., Zubieta J. (2003). Inorg. Chem. 42:6729

    Article  CAS  Google Scholar 

  9. (a) R. C. Finn, R. S. Rarig Junior, and J. Zubieta (2002). Inorg. Chem. 41, 2109. (b) H. -S. Zhang, R. -B. Fu, J. -J. Zhang, X. -T. Wu, Y. -M. Li, L. -S. Wang, X. -H. Huang (2005). J. Solid State Chem. 178, 1349. (c) E. Burkholder and J. Zubieta (2004). Inorg. Chim. Acta 357, 1229. (d) R. C. Finn, E. Burkholder, and J. Zubieta (2001). Chem. Commun. 1852. (e) E. Burkholder, V. Golub, C. J. O’Connor, and J. Zubieta (2004). Inorg. Chem. 43, 7014. (f) R. C. Finn and J. Zubieta (2001). Inorg. Chem. 40, 2466. (g) R. -B. Fu, X. -T. Wu, S. -M. Hu, J. -J. Zhang, Z. -Y. Fu, W. -X. Du, S. -Q. Xia (2003). Eur. J. Inorg. Chem. 1798. (h) E. Burkholder, V. Golub, C. J. O’Connor, and J. Zubieta (2003). Chem. Commun. 2128

  10. Sheldrick G. M. (1996). SADABS. University of Göttingen, Germany

    Google Scholar 

  11. G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures (University of Göttingen, Germany, 1997); G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures (University of Göttingen, Germany, 1997).

  12. Flack H. D. (1983). Acta Cryst. A39:876–881

    CAS  Google Scholar 

  13. Kortz et al., manuscript in preparation

Download references

Acknowledgement

This work was supported by Jacobs University Bremen. All Figures were generated by Diamond Version 3.1a (copyright Crystal Impact GbR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kortz.

Additional information

Dedicated to Professor Dieter Fenske on the occasion of his 65th birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2007_128_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chubarova, E.V., Klöck, C., Dickman, M.H. et al. Cation Dependent Formation of Hybrid Organic–Inorganic Frameworks Based on the Strandberg-Type Polyanion [(O2CCH2PO3)2Mo5O15]6− and Cu2+ Ions. J Clust Sci 18, 697–710 (2007). https://doi.org/10.1007/s10876-007-0128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0128-7

Keywords

Navigation