Skip to main content

Advertisement

Log in

Unrelated Hematopoietic Cell Transplantation in a Patient with Combined Immunodeficiency with Granulomatous Disease and Autoimmunity Secondary to RAG Deficiency

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCT was completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol. 2004;22:625–55.

    Article  CAS  PubMed  Google Scholar 

  3. Dvorak CC, Hassan A, Slatter MA, Honig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134(4):935–43. e15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest. 2015;125(11):4135–48.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buchbinder D, Baker R, Lee YN, Ravell J, Zhang Y, McElwee J, et al. Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol. 2015;35(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  6. Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B, et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med. 2008;358(19):2030–8.

    Article  CAS  PubMed  Google Scholar 

  7. Reiff A, Bassuk AG, Church JA, Campbell E, Bing X, Ferguson PJ. Exome sequencing reveals RAG1 mutations in a child with autoimmunity and sterile chronic multifocal osteomyelitis evolving into disseminated granulomatous disease. J Clin Immunol. 2013;33(8):1289–92.

    Article  PubMed  Google Scholar 

  8. Geier CB, Piller A, Linder A, Sauerwein KM, Eibl MM, Wolf HM. Leaky RAG deficiency in adult patients with impaired antibody production against bacterial polysaccharide antigens. PLoS One. 2015;10(7), e0133220.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schuetz C, Pannicke U, Jacobsen EM, Burggraf S, Albert MH, Honig M, et al. Lesson from hypomorphic recombination-activating gene (RAG) mutations: why asymptomatic siblings should also be tested. J Allergy Clin Immunol. 2014;133(4):1211–5.

    Article  CAS  PubMed  Google Scholar 

  10. Norarangelo LD, Kim MS, Walter JE, Lee YN. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16(4):234–46.

    Article  Google Scholar 

  11. Chen K, Wu W, Mathew D, Zhang Y, Browne SK, Rosen LB, et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol. 2014;133(3):880–2. e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Avila EM, Uzel G, Hsu A, Milner JD, Turner ML, Pittaluga S, et al. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics. 2010;126(5):e1248–52.

    Article  PubMed  Google Scholar 

  13. De Ravin SS, Cowen EW, Zarember KA, Whiting-Theobald NL, Kuhns DB, Sandler NG, et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood. 2010;116(8):1263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Henderson LA, Frugoni F, Hopkins G, de Boer H, Pai SY, Lee YN, et al. Expanding the spectrum of recombination-activating gene 1 deficiency: a family with early-onset autoimmunity. J Allergy Clin Immunol. 2013;132(4):969–71. e1-2.

    Article  CAS  PubMed  Google Scholar 

  15. Marrella V, Poliani PL, Notarangelo LD, Grassi F, Villa A. Rag defects and thymic stroma: lessons from animal models. Front Immunol. 2014;5:259.

    PubMed  PubMed Central  Google Scholar 

  16. Karo JM, Schatz DG, Sun JC. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell. 2014;159(1):94–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dominietto A, Raiola AM, van Lint MT, Lamparelli T, Gualandi F, Berisso G, et al. Factors influencing haematological recovery after allogeneic haemopoietic stem cell transplants: graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. Br J Haematol. 2001;112(1):219–27.

    Article  CAS  PubMed  Google Scholar 

  18. Larocca A, Piaggio G, Podesta M, Pitto A, Bruno B, Di Grazia C, et al. Boost of CD34 + −selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica. 2006;91(7):935–40.

    PubMed  Google Scholar 

  19. Haen SP, Schumm M, Faul C, Kanz L, Bethge WA, Vogel W. Poor graft function can be durably and safely improved by CD34 + −selected stem cell boosts after allogeneic unrelated matched or mismatched hematopoietic cell transplantation. J Cancer Res Clin Oncol. 2015;141(12):2241–51.

    Article  PubMed  Google Scholar 

  20. Wolff SN. Second hematopoietic stem cell transplantation for the treatment of graft failure, graft rejection or relapse after allogeneic transplantation. Bone Marrow Transplant. 2002;29(7):545–52.

    Article  CAS  PubMed  Google Scholar 

  21. Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One. 2012;7(1), e30494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckley RH, Win CM, Moser BK, Parrott RE, Sajaroff E, Sarzotti-Kelsoe M. Post-transplantation B cell function in different molecular types of SCID. J Clin Immunol. 2013;33(1):96–110.

    Article  CAS  PubMed  Google Scholar 

  23. Schuetz C, Neven B, Dvorak CC, et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood. 2014;123(2):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins AM, et al. Treosulfan based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood 2016.

  25. Slatter MA, Boztug H, Potschger U, Sykora KW, Lankester A, Yaniv I, et al. Treosulfan-based conditioning regimens for allogeneic hematopoietic stem cell transplantation in children with non-malignant diseases. Bone Marrow Transplant. 2015;50(12):1536–41.

    Article  CAS  PubMed  Google Scholar 

  26. Slatter MA, Rao K, Amrolia P, Flood T, Abinun M, Hambleton S, et al. Treosulfan-based conditioning regimens for allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117(16):4367–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tami John.

Ethics declarations

Written consent was obtained from the patient for participation in an NIAID IRB-approved research protocol. Written consent was obtained from the patient for participation in CHOC Children’s Hospital IRB-approved research protocols.

Conflict of Interest

The authors declare that they have no competing interests.

Funding

This work was supported in part by funds from the Intramural Research Program of the National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health (NIH).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, T., Walter, J.E., Schuetz, C. et al. Unrelated Hematopoietic Cell Transplantation in a Patient with Combined Immunodeficiency with Granulomatous Disease and Autoimmunity Secondary to RAG Deficiency. J Clin Immunol 36, 725–732 (2016). https://doi.org/10.1007/s10875-016-0326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0326-x

Keywords

Navigation