Skip to main content

Advertisement

Log in

Fatal Lymphoproliferative Disease in Two Siblings Lacking Functional FAAP24

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Hereditary defects in several genes have been shown to disturb the normal immune response to EBV and to give rise to severe EBV-induced lymphoproliferation in the recent years. Nevertheless, in many patients, the molecular basis of fatal EBV infection still remains unclear. The Fanconi anemia-associated protein 24 (FAAP24) plays a dual role in DNA repair. By association with FANCM as component of the FA core complex, it recruits the FA core complex to damaged DNA. Additionally, FAAP24 has been shown to evoke ATR-mediated checkpoint responses independently of the FA core complex. By whole exome sequencing, we identified a homozygous missense mutation in the FAAP24 gene (cC635T, pT212M) in two siblings of a consanguineous Turkish family who died from an EBV-associated lymphoproliferative disease after infection with a variant EBV strain, expressing a previously unknown EBNA2 allele.

In order to analyze the functionality of the variant FAAP24 allele, we used herpes virus saimiri-transformed patient T cells to test endogenous cellular FAAP24 functions that are known to be important in DNA damage control. We saw an impaired FANCD2 monoubiquitination as well as delayed checkpoint responses, especially affecting CHK1 phosphorylation in patient samples in comparison to healthy controls. The phenotype of this FAAP24 mutation might have been further accelerated by an EBV strain that harbors an EBNA2 allele with enhanced activities compared to the prototype laboratory strain B95.8. This is the first report of an FAAP24 loss of function mutation found in human patients with EBV-associated lymphoproliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  2. Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. 2012;130(5):1144–52. e11.

    Article  CAS  PubMed  Google Scholar 

  3. Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119(5):1350–8. Pubmed Central PMCID: 2673872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moshous D, Martin E, Carpentier W, Lim A, Callebaut I, Canioni D, et al. Whole-exome sequencing identifies coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603. Pubmed Central PMCID: 3824285.

    Article  CAS  PubMed  Google Scholar 

  5. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;9(23):13765–70. Pubmed Central PMCID: 24894.

    Article  Google Scholar 

  6. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.

    Article  CAS  PubMed  Google Scholar 

  7. Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica. 2013;98(3):473–8. Pubmed Central PMCID: 3659923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Montfrans JM, Hoepelman AI, Otto S, van Gijn M, van de Corput L, de Weger RA, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129(3):787–93. Pubmed Central PMCID: 3294016, e6.

    Article  PubMed  Google Scholar 

  9. Li FY, Lenardo MJ, Chaigne-Delalande B. Loss of MAGT1 abrogates the Mg2+ flux required for T cell signaling and leads to a novel human primary immunodeficiency. Magnes Res. 2011;24(3):S109–14. Pubmed Central PMCID: 3732466.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014;510(7504):288–92.

    Article  CAS  PubMed  Google Scholar 

  11. Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell. 2007;25(3):331–43.

    Article  CAS  PubMed  Google Scholar 

  12. Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS, Maslen SL, et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell. 2008;32(3):313–24.

    Article  CAS  PubMed  Google Scholar 

  13. Schwab RA, Blackford AN, Niedzwiedz W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 2010;29(4):806–18. Pubmed Central PMCID: 2829160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schuster V, Kreth HW, Muller-Hermelink HK, Huppertz HI, Feller AC, Neumann-Haefelin D, et al. Epstein-Barr virus infection rapidly progressing to monoclonal lymphoproliferative disease in a child with selective immunodeficiency. Eur J Pediatr. 1990;150(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  15. Schuster V, Seidenspinner S, Kreth HW. Detection of a nuclear antigen 2 (EBNA2)-variant Epstein-Barr virus strain in two siblings with fatal lymphoproliferative disease. J Med Virol. 1996;48(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. Pubmed Central PMCID: 2828108.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. Pubmed Central PMCID: 2723002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Duraku LS, Hossaini M, Schuttenhelm BN, Holstege JC, Baas M, Ruigrok TJ, et al. Re-innervation patterns by peptidergic substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp Neurol. 2013;241:13–24.

    Article  CAS  PubMed  Google Scholar 

  19. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8. Pubmed Central PMCID: 3083463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics. 2010;26(16):2069–70. Pubmed Central PMCID: 2916720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. Pubmed Central PMCID: 2855889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.

    Article  CAS  PubMed  Google Scholar 

  23. Biesinger B, Muller-Fleckenstein I, Simmer B, Lang G, Wittmann S, Platzer E, et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci U S A. 1992;89(7):3116–9. Pubmed Central PMCID: 48815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26(5):963–71.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, Cohen MM, et al. Establishment in continuous culture of a new type of lymphocyte from a "Burkitt like" malignant lymphoma (line D.G.-75). Int J Cancer. 1977;19(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  26. Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U, et al. RBP-L, a transcription factor related to RBP-Jkappa. Mol Cell Biol. 1997;17(5):2679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Han X, Wu F, Leung JW, Lowery MG, Do H, et al. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response. Cell Res. 2013;23(10):1215–28. Pubmed Central PMCID: 3790240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001;7(2):249–62.

    Article  CAS  PubMed  Google Scholar 

  29. Andreassen PR, D'Andrea AD, Taniguchi T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004;18(16):1958–63. Pubmed Central PMCID: 514175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deans AJ, West SC. FANCM connects the genome instability disorders Bloom's syndrome and Fanconi anemia. Mol Cell. 2009;36(6):943–53.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Leung JW, Jiang Y, Lowery MG, Do H, Vasquez KM, et al. FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol Cell. 2013;49(5):997–1009. Pubmed Central PMCID: 3595374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, Bier P, et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet. 2005;37(9):958–63. Pubmed Central PMCID: 2704909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh TR, Bakker ST, Agarwal S, Jansen M, Grassman E, Godthelp BC, et al. Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood. 2009;114(1):174–80. Pubmed Central PMCID: 2710946.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Horejsi Z, Collis SJ, Boulton SJ. FANCM-FAAP24 and HCLK2: roles in ATR signalling and the Fanconi anemia pathway. Cell Cycle. 2009;8(8):1133–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kutler DI, Wreesmann VB, Goberdhan A, Ben-Porat L, Satagopan J, Ngai I, et al. Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J Natl Cancer Inst. 2003;95(22):1718–21.

    Article  CAS  PubMed  Google Scholar 

  36. Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, et al. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res. 2010;70(23):9959–68. Pubmed Central PMCID: 2999655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gregorek H, Chrzanowska KH, Dzierzanowska-Fangrat K, Wakulinska A, Pietrucha B, Zapasnik A, et al. Nijmegen breakage syndrome: long-term monitoring of viral and immunological biomarkers in peripheral blood before development of malignancy. Clin Immunol. 2010;135(3):440–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kulinski JM, Leonardo SM, Mounce BC, Malherbe L, Gauld SB, Tarakanova VL. Ataxia telangiectasia mutated kinase controls chronic gammaherpesvirus infection. J Virol. 2012;86(23):12826–37. Pubmed Central PMCID: 3497635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lankisch P, Adler H, Borkhardt A. Testing for herpesvirus infection is essential in children with chromosomal-instability syndromes. J Virol. 2013;87(6):3616–7. Pubmed Central PMCID: 3592146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kondo N, Inoue R, Orii T. Responses of lymphocytes to Epstein-Barr virus in patients with primary immunodeficiencies. J Investig Allergol Clin Immunol. 1994;4(4):182–4.

    CAS  PubMed  Google Scholar 

  41. Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG. The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A. 2009;106(7):2313–8. Pubmed Central PMCID: 2650153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cohen JI, Wang F, Kieff E. Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol. 1991;65(5):2545–54. Pubmed Central PMCID: 240611.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schuster V, Ott G, Seidenspinner S, Kreth HW. Common Epstein-Barr virus (EBV) type-1 variant strains in both malignant and benign EBV-associated disorders. Blood. 1996;87(4):1579–85.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Monika Schmidt, Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg, for the technical assistance with HVS transformation of primary patient T cells and Conny Kuklik-Roos for performing the luciferase assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bienemann.

Ethics declarations

Ethical Approval

All procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Authorship

SD, KB, and AB designed the study. VS and HWK treated the patients and provided patient samples as well as clinical, immunological, and virological information. SD, RML, AH, GF, CJ, BF, and BK performed the research. MG and SG developed the in-house exome sequencing and data analysis pipeline. SD and KB drafted the manuscript.

Disclosures

No author has any financial or other potential conflict of interest to disclose.

The project was funded by a grant from the German Research Foundation (Deutsche Forschungsgemeinschaft) to KB and a grant from the Deutsche Krebshilfe to BK.

Additional information

Svenja Daschkey and Kirsten Bienemann contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Validation of the FAAP24 SNP in immortalized T cells A) and B) on the genomic level, C) on transcriptomic level, and D) on proteomic level. (TIF 1500 kb)

Figure S2

Schematic structures of the wild-type (gray) and the mutant A) FAAP24 gene (red) and B) FAAP24 protein (blue). The mutation is indicated as a red line at position 4428 (C4428T) on DNA level and 212 (T212M) on protein level. Abbreviations: E exon, UTR untranslated region, wt wild-type, HhH helix-hairpin-helix, ERCC4 excision repair cross-complementation group 4. (TIF 462 kb)

Figure S3

No upregulation of FAAP24 after PHA and CD3/CD28 stimulation in primary T cells shown A) on the transcriptomic level by qRT-PCR. Standard deviations are indicated as error bars. (TIF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daschkey, S., Bienemann, K., Schuster, V. et al. Fatal Lymphoproliferative Disease in Two Siblings Lacking Functional FAAP24. J Clin Immunol 36, 684–692 (2016). https://doi.org/10.1007/s10875-016-0317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0317-y

Keywords

Navigation