Skip to main content

Advertisement

Log in

Oral Administration of OKT3 MAb to Patients with NASH, Promotes Regulatory T-cell Induction, and Alleviates Insulin Resistance: Results of a Phase IIa Blinded Placebo-Controlled Trial

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Oral administration of anti-CD3 antibodies induced regulatory T cells (Tregs) alleviating the insulin resistance and liver damage in animal models.

Objective

To determine the safety and biological effects of oral OKT3 monoclonal antibody (Balashov et al. Neurology 55:192–8, 2000) in patients with NASH.

Design

In this Phase-IIa trial, four groups of patients with biopsy-proven NASH (n = 9/group) received placebo (group A) or oral OKT3 (group B: 0.2; C: 1.0; D: 5.0 mg/day) for 30 days. Patients were followed for safety, liver enzymes, glucose, lipid profile, oral glucose tolerance test (OGTT), serum cytokines and Tregs.

Results

Oral OKT3 was well tolerated without treatment-related adverse events. OKT3 induced Tregs: with significant increases of CD4+LAP+ (Latency associated peptide) and CD4+CD25+LAP+ cells in Group D, and a significant increase in TGF-β in Groups C and D. AST decreased significantly in group D and a trend in Groups B and C. Fasting plasma glucose decreased significantly in all treatment groups compared with placebo. OGTT decreased significantly in Group D. Correlations were observed between the changes in several immune-modulatory effects and clinical biomarkers. While serum anti-CD3 levels where undetectable increases in human anti-mouse antibody levels were observed in Groups C and D.

Conclusion

Oral administration of anti-CD3 MAb to patients with NASH was safe and well tolerated. Positive biological effects were noted in several hepatic, metabolic and immunologic parameters. These findings provide the basis for future trials to investigate the effect of oral anti-CD3 MAb immunotherapy in patients with NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NASH:

Nonalcoholic steatohepatitis

T2D:

Type 2 diabetes

Tregs:

Regulatory T cells

OGTT:

Oral glucose tolerance test

HAMA:

Human anti-mouse antibody

LAP:

Latency-associated peptide

MAb:

Monoclonal antibody

FACS:

Fluorescence-activated cell sorting

References

  1. Friend PJ, Hale G, Chatenoud L, et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation. 1999;68:1632–7.

    Article  CAS  PubMed  Google Scholar 

  2. Herold KC, Gitelman SE, Masharani U, et al. A single course of anti-CD3 monoclonal antibody hOKT3 gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54:1763–9.

    Article  CAS  PubMed  Google Scholar 

  3. Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–8.

    Article  CAS  PubMed  Google Scholar 

  4. Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7:622–32.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Kuchroo VK, Inobe J, et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265:1237–40.

    Article  CAS  PubMed  Google Scholar 

  6. Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207–14.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Izikson L, Liu L, et al. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol. 2001;167:4245–53.

    Article  CAS  PubMed  Google Scholar 

  8. Ishikawa H, Ochi H, Chen ML, et al. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes. 2007;56:2103–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ochi H, Abraham M, Ishikawa H, et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells. Nat Med. 2006;12:627–35.

    Article  CAS  PubMed  Google Scholar 

  10. Rav-Acha M, Sassa D, Ilan Y, et al. [Surgical intervention in infective endocarditis: indications and timing]. Harefuah. 2005;144:421–5.

    PubMed  Google Scholar 

  11. Wu HY, Quintana FJ, Weiner HL. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. J Immunol. 2008;181:6038–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wu HY, Maron R, Tukpah AM, et al. Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. J Immunol. 2010;185:3401–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hotamisligil GS. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes (Lond). 2008;32 Suppl 7:S52–4.

    Article  CAS  Google Scholar 

  14. Winer S, Chan Y, Paltser G, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15:921–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ilan Y, Maron R, Tukpah AM, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A. 2010;107:9765–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ilan Y, Zigmond E, Lalazar G, et al. Oral administration of OKT3 monoclonal antibody to human subjects induces a dose-dependent immunologic effect in T cells and dendritic cells. J Clin Immunol. 2010;30:167–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Renders L, Valerius T. Engineered CD3 antibodies for immunosuppression. Clin Exp Immunol. 2003;133:307–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Weiner HL, da Cunha AP, Quintana F, et al. Oral tolerance. Immunol Rev. 2011;241:241–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Meijer RT, Surachno S, Yong SL, et al. Treatment of acute kidney allograft rejection with a non-mitogenic CD3 antibody. Clin Exp Immunol. 2003;133:485–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Saharinen J, Hyytiainen M, Taipale J, et al. Latent transforming growth factor-beta binding proteins (LTBPs)–structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev. 1999;10:99–117.

    Article  CAS  PubMed  Google Scholar 

  21. Verma SC, Lan K, Robertson E. Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol. 2007;312:101–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Oida T, Zhang X, Goto M, et al. CD4 + CD25- T cells that express latency-associated peptide on the surface suppress CD4 + CD45RB high-induced colitis by a TGF-beta-dependent mechanism. J Immunol. 2003;170:2516–22.

    Article  CAS  PubMed  Google Scholar 

  23. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  24. Baecher-Allan C, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Immunol Rev. 2006;212:203–16.

    Article  CAS  PubMed  Google Scholar 

  25. Belkaid Y. Regulatory T, cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7:875–88.

    Article  CAS  PubMed  Google Scholar 

  26. Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev. 2006;212:217–37.

    Article  CAS  PubMed  Google Scholar 

  27. Shalev I, Schmelzle M, Robson SC, et al. Making sense of regulatory T cell suppressive function. Semin Immunol. 2011;23:282–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bluestone JA, Tang Q. How do CD4 + CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol. 2005;17:638–42.

    Article  CAS  PubMed  Google Scholar 

  29. Chatenoud L, Bach JF. Regulatory T cells in the control of autoimmune diabetes: the case of the NOD mouse. Int Rev Immunol. 2005;24:247–67.

    Article  CAS  PubMed  Google Scholar 

  30. Randolph DA, Fathman CG. Cd4 + Cd25+ regulatory T cells and their therapeutic potential. Annu Rev Med. 2006;57:381–402.

    Article  CAS  PubMed  Google Scholar 

  31. von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol. 2007;7:988–94.

    Article  Google Scholar 

  32. Yeh SH, Chuang H, Lin LW, et al. Tai chi chuan exercise decreases A1C levels along with increase of regulatory T-cells and decrease of cytotoxic T-cell population in type 2 diabetic patients. Diabetes Care. 2007;30:716–8.

    Article  PubMed  Google Scholar 

  33. Ma X, Hua J, Mohamood AR, et al. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology. 2007;46:1519–29.

    Article  CAS  PubMed  Google Scholar 

  34. Chatzigeorgiou A, Chung KJ, Garcia-Martin R, et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology. 2014;60:1196–210.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank AML (Herzliya, Israel) for clinical chemistry/biochemistry/cytometry analyses and Medistat (Tel Aviv, Israel) for statistical analyses.

Grant Support

This work was supported by NasVax Ltd, Ness-Ziona Israel, and by the Roaman-Epstein Liver Research Foundation.

Disclosure

This clinical trial was funded by NasVax Ltd, Ness-Ziona, Israel; Yaron Ilan is a consultant for NasVax; Nadya Lisovoder, Sarit Samira, and Ronald Ellis are employees and Itamar Shalit is a director of NasVax.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Ilan.

Additional information

Gadi Lalazarv, Meir Mizrahi and Ilit Turgeman contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalazar, G., Mizrahi, M., Turgeman, I. et al. Oral Administration of OKT3 MAb to Patients with NASH, Promotes Regulatory T-cell Induction, and Alleviates Insulin Resistance: Results of a Phase IIa Blinded Placebo-Controlled Trial. J Clin Immunol 35, 399–407 (2015). https://doi.org/10.1007/s10875-015-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0160-6

Keywords

Navigation