Skip to main content

Advertisement

Log in

Severe XLP Phenotype Caused by a Novel Intronic Mutation in the SH2D1A Gene

  • Astute Clinician Report
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

We describe here a novel c.137 + 5G > A intronic mutation in the SH2D1A gene of the signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in association with Epstein-Barr virus (EBV)-induced fatal infectious mononucleosis (FIM) in an 8-year-old male patient and his 3-year-old step brother. The mother and the maternal grandmother of the boys are healthy and heterozygous for this sequence variant. Genetic sequencing of blood-cell-derived cDNA in the younger patient revealed a 22 bp deletion in the SH2D1A cDNA. Immunoblot and flow cytometry analysis performed in this younger patient showed the lack of SAP protein expression in peripheral blood lymphocytes. These data suggest that the novel c.137 + 5G > A mutation results in loss of function of SAP protein and leads to typical X-linked lymphoproliferative disease phenotype. We propose that intron 1 and the c.137 + 5G may be the most frequent intronic hot spot for SH2D1A splicing mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood. 2010;116:3398–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dupre L, Andolfi G, Tangye SG, Clementi R, Locatelli F, Arico M, et al. SAP controls the cytolytic activity of CD8 T cells against EBV-infected cells. Blood. 2005;105:4383–9.

    Article  CAS  PubMed  Google Scholar 

  3. Purtilo DT, Cassel CK, Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet. 1975;7913:935–40.

    Article  Google Scholar 

  4. Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38:471–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sümegi J, Seemayer TA, Huang D, Davis JR, Morra M, Gross TG, et al. A spectrum of mutations in SH2D1A that causes X-linked lymphoproliferative disease and other Epstein-Barr virus-associated illnesses. Leuk Lymphoma. 2002;43:1189–201.

    Article  PubMed  Google Scholar 

  6. Ma CS, Hare NJ, Nichols KE, Dupré L, Andolfi G, Roncarolo MG, et al. Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest. 2005;115:1049–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med. 2000;192:337–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cuss AK, Avery DT, Cannons JL, Yu LJ, Nichols KE, Shaw PJ, et al. Expansion of functionally immature transitional B cells is associated with human-immunodeficient states characterized by impaired humoral immunity. J Immunol. 2006;176:1506–16.

    Article  CAS  PubMed  Google Scholar 

  9. Chaganti S, Ma CS, Bell AI, Croom-Carter D, Hislop AD, Tangye SG, et al. Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM + IgD + CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood. 2008;112:672–9.

    Article  CAS  PubMed  Google Scholar 

  10. Recher M, Fried AJ, Massaad MJ, Kim HY, Rizzini M, Frugoni F, et al. Intronic SH2D1A mutation with impaired SAP expression and agammaglobulinemia. Clin Immunol. 2012;146:84–9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Latour S, Veillette A. Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol Rev. 2003;192:212–24.

    Article  CAS  PubMed  Google Scholar 

  12. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;95:13765–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117:1522–9.

    Article  PubMed  Google Scholar 

  14. Sumazaki R, Kanegane H, Osaki M, Fukushima T, Tsuchida M, Matsukura H, et al. SH2D1A mutations in Japanese males with severe Epstein-Barr virus–associated illnesses. Blood. 2001;98:1268–70.

    Article  CAS  PubMed  Google Scholar 

  15. Brandau O, Schuster V, Weiss M, Hellebrand H, Fink FM, Kreczy A, et al. Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet. 1999;8:2407–13.

    Article  CAS  PubMed  Google Scholar 

  16. Sümegi J, Huang D, Lányi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and epstein-barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–25.

    PubMed  Google Scholar 

  17. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nat. 1998;395:462–9.

    Article  CAS  Google Scholar 

  18. Tabata Y, Villanueva J, Lee SM, Zhang K, Kanegane H, Miyawaki T, et al. Rapid detection of intracellular SH2D1A protein in cytotoxic lymphocytes from patients with X-linked lymphoproliferative disease and their family members. Blood. 2005;105:3066–71.

    Article  CAS  PubMed  Google Scholar 

  19. Debeljak M, Podkrajsek KT, Aplenc R, Jazbec J. X-linked lymphoproliferative disease with a novel SH2D1A gene mutation. Pediatr Blood Cancer. 2008;50:187.

    Article  PubMed  Google Scholar 

  20. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20:129–35.

    Article  CAS  PubMed  Google Scholar 

  21. Yin L, Ferrand V, Lavoué MF, Hayoz D, Philippe N, Souillet G, et al. SH2D1A mutation analysis for diagnosis of XLP in typical and atypical patients. Hum Genet. 1999;105:501–5.

    Article  CAS  PubMed  Google Scholar 

  22. Erdős M, Uzvölgyi E, Nemes Z, Török O, Rákóczi E, Went-Sümegi N, et al. Characterization of a new disease-causing mutation of SH2D1A in a family with X-linked lymphoproliferative disease. Hum Mutat. 2005;25:506.

    Article  PubMed  Google Scholar 

  23. Nagy N, Cerboni C, Mattsson K, Maeda A, Gogolak P, Sümegi J, et al. SH2D1A and SLAM protein expression in human lymphocytes and derived cell lines. Int J Cancer. 2000;88:439–47.

    Article  CAS  PubMed  Google Scholar 

  24. Soltész B, Tóth B, Shabashova N, Bondarenko A, Okada S, Cypowyj S, et al. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet. 2013;50:567–78.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Sümegi, R. Marsch and G. Kriván for help. This work was supported by the TÁMOP 4.2.2.A-11/1/KONV-2012-0023 “VÉD-ELEM” project grant to LM.

Conflicts of interest

The authors have no competing financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erdős.

Additional information

Shared last authorship L Maródi and M. Erdős

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, B., Soltész, B., Gyimesi, E. et al. Severe XLP Phenotype Caused by a Novel Intronic Mutation in the SH2D1A Gene. J Clin Immunol 35, 26–31 (2015). https://doi.org/10.1007/s10875-014-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0117-1

Keywords

Navigation