Skip to main content

Advertisement

Log in

Molecular Characterization of Human Plasmacytoid Dendritic Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Plasmacytoid dendritic cells (pDCs) represent a unique and important immune cell population capable of producing large quantifies of type I interferon (IFN) in response to viruses as well as nucleic acid-containing complexes from the host. These rare and mysterious cells have been revealed by in-depth molecular characterization. Several innate sensors and signaling molecules enriched in pDCs allow their specialized innate immune functions. In addition, human pDCs use a group of surface receptors that, through activation of a B-cell receptor (BCR)-like signaling pathway, modulate type I IFN responses. It is clear now that pDC development is influenced by distinctive transcription factors that specify a unique lineage. CD4+CD56+ hematodermic neoplasm of human pDC origin has been revealed in explicit molecular terms.

Conclusion

A detailed molecular description of pDCs helps us better define, understand, and track human pDCs in relation to their functions and physiological involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegal FP, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284:1835–7. doi:10.1126/science.284.5421.1835.

    PubMed  CAS  Google Scholar 

  2. Cella M. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce high levels of type I IFN. Nat Med. 1999;5:919–23. doi:10.1038/11360.

    PubMed  CAS  Google Scholar 

  3. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306. doi:10.1146/annurev.immunol.23.021704.115633.

    PubMed  CAS  Google Scholar 

  4. Ito T, et al. Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood 2006;107:2423–31. doi:10.1182/blood-2005-07-2709.

    PubMed  CAS  Google Scholar 

  5. Kadowaki N, et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194:863–70. doi:10.1084/jem.194.6.863.

    PubMed  CAS  Google Scholar 

  6. Hornung V, et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168:4531–7.

    PubMed  CAS  Google Scholar 

  7. Jarrossay D, et al. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol. 2001;31:3388–93. doi:10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q.

    PubMed  CAS  Google Scholar 

  8. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5:1219–26. doi:10.1038/ni1141.

    PubMed  CAS  Google Scholar 

  9. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. doi:10.1038/nri1391.

    PubMed  CAS  Google Scholar 

  10. Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 2004;6:1382–7. doi:10.1016/j.micinf.2004.08.018.

    PubMed  CAS  Google Scholar 

  11. Lund JM, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 2004;101:5598–603. doi:10.1073/pnas.0400937101.

    PubMed  CAS  Google Scholar 

  12. Heil F, et al. Species-specific recognition of single-stranded RNA via Toll-like Receptor 7 and 8. Science 2004;303:1526–9. doi:10.1126/science.1093620.

    PubMed  CAS  Google Scholar 

  13. Diebold SS, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529–31. doi:10.1126/science.1093616.

    PubMed  CAS  Google Scholar 

  14. Bauer S, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 2001;98:9237–42. doi:10.1073/pnas.161293498.

    PubMed  CAS  Google Scholar 

  15. Hemmi H, et al. A Toll-like receptor recognizes bacterial. DNA 2000;408:740–5.

    CAS  Google Scholar 

  16. Haas T, et al. The DNA sugar backbone 2′ deoxyribose determines Toll-like receptor 9 Activation. Immunity 2008;28:315–23. doi:10.1016/j.immuni.2008.01.013.

    PubMed  CAS  Google Scholar 

  17. Wagner H. The immunobiology of the TLR9 subfamily. Trends Immunol. 2004;25:381–6. doi:10.1016/j.it.2004.04.011.

    PubMed  CAS  Google Scholar 

  18. Honda K, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci USA. 2004;101:15416–21. doi:10.1073/pnas.0406933101.

    PubMed  CAS  Google Scholar 

  19. Honda K, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005;434:772–7. doi:10.1038/nature03464.

    PubMed  CAS  Google Scholar 

  20. Deng L, et al. Activation of the I[kappa]B kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000;103:351–61. doi:10.1016/S0092-8674(00)00126-4.

    PubMed  CAS  Google Scholar 

  21. Wang C, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001;412:346–51. doi:10.1038/35085597.

    PubMed  CAS  Google Scholar 

  22. Osawa Y, et al. Collaborative action of NF-{kappa}B and p38 MAPK is involved in CpG DNA-Induced IFN-{alpha} and chemokine production in human plasmacytoid dendritic cells. J Immunol. 2006;177:4841–52.

    PubMed  CAS  Google Scholar 

  23. Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006;6:644–58. doi:10.1038/nri1900.

    PubMed  CAS  Google Scholar 

  24. Taniguchi T, Takaoka A. The interferon-[alpha]/[beta] system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol. 2002;14:111–6. doi:10.1016/S0952-7915(01)00305-3.

    PubMed  CAS  Google Scholar 

  25. Colina R, et al. Translational control of the innate immune response through IRF-7. Nature 2008;452:323–8. doi:10.1038/nature06730.

    PubMed  CAS  Google Scholar 

  26. Barchet W, et al. Virus-induced interferon {alpha} production by a dendritic cell subset in the absence of feedback signaling in vivo. J Exp Med. 2002;195:507–16. doi:10.1084/jem.20011666.

    PubMed  CAS  Google Scholar 

  27. Tailor P, et al. The feedback phase of type i interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 2007;27:228–39. doi:10.1016/j.immuni.2007.06.009.

    PubMed  CAS  Google Scholar 

  28. Tsujimura H, Tamura T, Ozato K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol. 2003;170:1131–5.

    PubMed  CAS  Google Scholar 

  29. Takaoka A, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434:243–9. doi:10.1038/nature03308.

    PubMed  CAS  Google Scholar 

  30. Grouard G, et al. The enigmatic plasmacytoid t cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med. 1997;185:1101–12. doi:10.1084/jem.185.6.1101.

    PubMed  CAS  Google Scholar 

  31. Latz E. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5:190–8.

    PubMed  CAS  Google Scholar 

  32. Honda K, et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 2005;434:1035–40. doi:10.1038/nature03547.

    PubMed  CAS  Google Scholar 

  33. Guiducci C, et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med. 2006;203:1999–2008. doi:10.1084/jem.20060401.

    PubMed  CAS  Google Scholar 

  34. Casrouge A, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 2006;314:308–12. doi:10.1126/science.1128346.

    PubMed  CAS  Google Scholar 

  35. Tabeta K, et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol. 2006;7:156–64. doi:10.1038/ni1297.

    PubMed  CAS  Google Scholar 

  36. Brinkmann MM, et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007;177:265–75. doi:10.1083/jcb.200612056.

    PubMed  CAS  Google Scholar 

  37. Yang Y, et al. Heat shock protein gp96 Is a Master Chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity 2007;26:215–26. doi:10.1016/j.immuni.2006.12.005.

    PubMed  Google Scholar 

  38. Iwakoshi NN, Pypaert M, Glimcher LH. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 2007;204:2267–75. doi:10.1084/jem.20070525.

    PubMed  CAS  Google Scholar 

  39. Birmachu W, et al. Transcriptional networks in plasmacytoid dendritic cells stimulated with synthetic TLR 7 agonists. BMC Immunol. 2007;8:26. doi:10.1186/1471-2172-8-26.

    PubMed  Google Scholar 

  40. Piqueras B, et al. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 2006;107:2613–8. doi:10.1182/blood-2005-07-2965.

    PubMed  CAS  Google Scholar 

  41. Decalf J, et al. Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients. J Exp Med. 2007;204:2423–37. doi:10.1084/jem.20070814.

    PubMed  CAS  Google Scholar 

  42. Nestle FO, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J Exp Med. 2005;202:135–43. doi:10.1084/jem.20050500.

    PubMed  CAS  Google Scholar 

  43. Young LJ, et al. Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nat Immunol. 2008;9:1244–52. doi:10.1038/ni.1665.

    PubMed  CAS  Google Scholar 

  44. Di Pucchio T, et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol. 2008;9:551–7. doi:10.1038/ni.1602.

    PubMed  Google Scholar 

  45. Kadowaki N, et al. Natural Interferon {alpha}/{beta}-producing Cells Link Innate and Adaptive Immunity. J Exp Med. 2000;192:219–26. doi:10.1084/jem.192.2.219.

    PubMed  CAS  Google Scholar 

  46. Ito T, et al. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J Immunol. 2004;172:4253–9.

    PubMed  CAS  Google Scholar 

  47. Ito T, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–15. doi:10.1084/jem.20061660.

    PubMed  CAS  Google Scholar 

  48. Rissoan MC, et al. Subtractive hybridization reveals the expression of immunoglobulin-like transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells. Blood 2002;100:3295–303. doi:10.1182/blood-2002–02–0638.

    PubMed  CAS  Google Scholar 

  49. Stary G, et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med. 2007;204(6):1441–51.

    PubMed  CAS  Google Scholar 

  50. Chaperot L, et al. Virus or TLR agonists induce TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells. J Immunol. 2006;176:248–55.

    PubMed  CAS  Google Scholar 

  51. Chen W, et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 2008;181:5396–404.

    PubMed  CAS  Google Scholar 

  52. Rissoan MC, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183–6. doi:10.1126/science.283.5405.1183.

    PubMed  CAS  Google Scholar 

  53. O’Keeffe M, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8 + dendritic cells only after microbial stimulus. J Exp Med. 2002;196:1307–19. doi:10.1084/jem.20021031.

    PubMed  Google Scholar 

  54. Sullivan BM, Locksley RM. Basophils: a nonredundant contributor to host immunity. Immunity 2009;30:12–20. doi:10.1016/j.immuni.2008.12.006.

    PubMed  CAS  Google Scholar 

  55. Cella M, et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med. 1997;185:1743–51. doi:10.1084/jem.185.10.1743.

    PubMed  CAS  Google Scholar 

  56. Cao W, et al. Plasmacytoid dendritic cell-specific receptor ILT7-FcεRIγ inhibits Toll-like receptor-induced interferon production. J Exp Med. 2006;203:1399–405. doi:10.1084/jem.20052454.

    PubMed  CAS  Google Scholar 

  57. Cella M, et al. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol. 2000;1:305–10. doi:10.1038/79747.

    PubMed  CAS  Google Scholar 

  58. Dzionek A, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000;165:6037–46.

    PubMed  CAS  Google Scholar 

  59. Geijtenbeek TBH, et al. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol. 2004;22:33–54. doi:10.1146/annurev.immunol.22.012703.104558.

    PubMed  CAS  Google Scholar 

  60. Cambi A, Figdor CG. Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol. 2003;15:539–46. doi:10.1016/j.ceb.2003.08.004.

    PubMed  CAS  Google Scholar 

  61. Steinman R, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58. doi:10.1007/3-540-32636-7-2.

    PubMed  CAS  Google Scholar 

  62. Kanazawa N, Tashiro K, Miyachi Y. Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2. Immunobiology 2004;209:179–90. doi:10.1016/j.imbio.2004.03.004.

    PubMed  CAS  Google Scholar 

  63. Dzionek A, et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J Exp Med. 2001;194:1823–34. doi:10.1084/jem.194.12.1823.

    PubMed  CAS  Google Scholar 

  64. Dzionek A, et al. Plasmacytoid dendritic cells: from specific surface markers to specific cellular functions. Hum Immunol. 2002;63:1133–48. doi:10.1016/S0198-8859(02)00752-8.

    PubMed  CAS  Google Scholar 

  65. Cao W, et al. BDCA2/FcεRIγ complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells. PLoS Biol. 2007;5:e248. doi:10.1371/journal.pbio.0050248.

    PubMed  Google Scholar 

  66. Brown D, Trowsdale J, Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens. 2004;64:215–25. doi:10.1111/j.0001–2815.2004.00290.x.

    PubMed  CAS  Google Scholar 

  67. Ohtsuka M, et al. NFAM1, an immunoreceptor tyrosine-based activation motif-bearing molecule that regulates B cell development and signaling. Proc Natl Acad Sci USA. 2004;101:8126–31. doi:10.1073/pnas.0401119101.

    PubMed  CAS  Google Scholar 

  68. Cho M, et al. SAGE library screening reveals ILT7 as a specific plasmacytoid dendritic cell marker that regulates type I IFN production. Int Immunol. 2008;20:155–64. doi:10.1093/intimm/dxm127.

    PubMed  CAS  Google Scholar 

  69. Jun JE, Goodnow CC. Scaffolding of antigen receptors for immunogenic versus tolerogenic signaling. Nat Immunol. 2003;4:1057–64. doi:10.1038/ni1001.

    PubMed  CAS  Google Scholar 

  70. Koretzky GA, Abtahian F, Silverman MA. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol. 2006;6:67–78. doi:10.1038/nri1750.

    PubMed  CAS  Google Scholar 

  71. Röck J, et al. CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, Slp65 and PLCγ2. Eur J Immunol. 2007;37:3564–75. doi:10.1002/eji.200737711.

    PubMed  Google Scholar 

  72. Krieg AM, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995;374:546–9. doi:10.1038/374546a0.

    PubMed  CAS  Google Scholar 

  73. Novak N, et al. Characterization of FcεRI-bearing CD123 + blood dendritic cell antigen-2 + plasmacytoid dendritic cells in atopic dermatitis. J Allergy Clin Immunol. 2004;114:364–70. doi:10.1016/j.jaci.2004.05.038.

    PubMed  CAS  Google Scholar 

  74. Fuchs A, et al. Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood 2005;106:2076–82. doi:10.1182/blood-2004–12–4802.

    PubMed  CAS  Google Scholar 

  75. Blasius AL, et al. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 2006;107:2474–6. doi:10.1182/blood-2005–09–3746.

    PubMed  CAS  Google Scholar 

  76. Sjolin H, et al. DAP12 signaling regulates plasmacytoid dendritic cell homeostasis and down-modulates their function during viral infection. J Immunol. 2006;177:2908–16.

    PubMed  Google Scholar 

  77. Lande R, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007;449:564–9. doi:10.1038/nature06116.

    PubMed  CAS  Google Scholar 

  78. Blanco P, et al. Induction of dendritic cell differentiation by ifn-alpha in systemic lupus erythematosus. Science 2001;294:1540–3. doi:10.1126/science.1064890.

    PubMed  CAS  Google Scholar 

  79. Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: The role of toll-like receptors in the development of chronic inflammatory disease. Ann Rev Imm. 2007;25:419–41. doi:10.1146/annurev.immunol.22.012703.104514.

    CAS  Google Scholar 

  80. Yasuda K, et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174:6129–36.

    PubMed  CAS  Google Scholar 

  81. Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol. 2006;7:49–56. doi:10.1038/ni1280.

    PubMed  CAS  Google Scholar 

  82. Lennert K, Kaiserling E, Müller-Hermelink H. Letter: T-associated plasma-cells. Lancet 1973;3:1031–2.

    Google Scholar 

  83. Muller-Hermelink H, et al. Malignant lymphoma of plasmacytoid T cells. Morphologic and immunologic studies characterizing a special type of T cell. Am J Surg Pathol. 1983;8:849–62. doi:10.1097/00000478-198307080-00013.

    Article  Google Scholar 

  84. Strobl H, et al. Identification of CD68 + lin- peripheral blood cells with dendritic precursor characteristics. J Immunol. 1998;161:740–8.

    PubMed  CAS  Google Scholar 

  85. Liu YJ. Uncover the mystery of plasmacytoid dendritic cell precursors or type 1 interferon producing cells by serendipity. Hum Immunol. 2002;63:1067–71. doi:10.1016/S0198–8859(02)00744–9.

    PubMed  CAS  Google Scholar 

  86. Onai N, et al. Identification of clonogenic common Flt3 + M-CSFR + plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol. 2007;8:1207–16. doi:10.1038/ni1518.

    PubMed  CAS  Google Scholar 

  87. Naik SH, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol. 2007;8:1217–26. doi:10.1038/ni1522.

    PubMed  CAS  Google Scholar 

  88. Briáere F, et al. Origin and filiation of human plasmacytoid dendritic cells. Hum Immunol. 2002;63(12):1081–93. doi:10.1016/S0198-8859(02)00746-2.

    Google Scholar 

  89. Robbins S, et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008;9:R17. doi:10.1186/gb-2008-9-1-r17.

    PubMed  Google Scholar 

  90. Blom B, et al. Generation of interferon {{alpha}}-producing predendritic cell (Pre-DC)2 from human CD34 + hematopoietic stem cells. J Exp Med. 2000;192:1785–96. doi:10.1084/jem.192.12.1785.

    PubMed  CAS  Google Scholar 

  91. Gilliet M. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med. 2002;195:953–8. doi:10.1084/jem.20020045.

    PubMed  CAS  Google Scholar 

  92. Chen W, et al. Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors. Blood 2004;103:2547–53. doi:10.1182/blood-2003-09-3058.

    PubMed  CAS  Google Scholar 

  93. Esashi E, Wang Y-H, Perng O, Qin X-F, Liu Y-J, Watowich SS. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 2008; 28(4):509–520. doi:10.1016/j.immuni.2008.02.013.

    Google Scholar 

  94. Lazorchak A, Jones ME, Zhuang Y. New insights into E-protein function in lymphocyte development. Trends Immunol. 2005;26:334–8. doi:10.1016/j.it.2005.03.011.

    PubMed  CAS  Google Scholar 

  95. Murre C. Helix–loop–helix proteins and lymphocyte development. Nat Immunol. 2005;6:1079–86. doi:10.1038/ni1260.

    PubMed  CAS  Google Scholar 

  96. Cisse B, et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 2008;135:37–48. doi:10.1016/j.cell.2008.09.016.

    PubMed  CAS  Google Scholar 

  97. Maho Nagasawa HSMGHRSBB. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur J Immunol. 2008;38:2389–400. doi:10.1002/eji.200838470.

    PubMed  Google Scholar 

  98. Julie Dwyer HLDXJPL. Transcriptional regulation of telomerase activity. Ann N Y Acad Sci. 2007;1114:36–47. doi:10.1196/annals.1396.022.

    PubMed  Google Scholar 

  99. Schotte R, et al. The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood 2003;101:1015–23. doi:10.1182/blood-2002-02-0438.

    PubMed  CAS  Google Scholar 

  100. Schotte R, et al. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med. 2004;200:1503–9. doi:10.1084/jem.20041231.

    PubMed  CAS  Google Scholar 

  101. Norton J, et al. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 1998;8:58–65. doi:10.1016/S0962-8924(97)01183-5.

    PubMed  CAS  Google Scholar 

  102. Hacker C, et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol. 2003;4:380–6. doi:10.1038/ni903.

    PubMed  CAS  Google Scholar 

  103. Spits H, et al. Id2 and Id3 inhibit development of CD34 + stem cells into predendritic cell (Pre-DC)2 but not into Pre-DC1: evidence for a lymphoid origin of Pre-DC2. J Exp Med. 2000;192:1775–84. doi:10.1084/jem.192.12.1775.

    PubMed  CAS  Google Scholar 

  104. Chaperot L, et al. Identification of a leukemic counterpart of the plasmacytoid dendritic cells. Blood 2001;97:3210–7. doi:10.1182/blood.V97.10.3210.

    PubMed  CAS  Google Scholar 

  105. Chaperot L, et al. Leukemic plasmacytoid dendritic cells share phenotypic and functional features with their normal counterparts. Eur J Immunol. 2004;34:418–26. doi:10.1002/eji.200324531.

    PubMed  CAS  Google Scholar 

  106. Marafioti T, et al. Novel markers of normal and neoplastic human plasmacytoid dendritic cells. Blood 2008;111:3778–92. doi:10.1182/blood-2007-10-117531.

    PubMed  CAS  Google Scholar 

  107. Dijkman R, et al. Gene-expression profiling and array-based CGH classify CD4 + CD56 + hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood 2007;109:1720–7. doi:10.1182/blood-2006-04-018143.

    PubMed  CAS  Google Scholar 

  108. Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8:594–606. doi:10.1038/nri2358.

    PubMed  CAS  Google Scholar 

  109. Kageyama R, Ohtsuka T, Kobayashi T. Roles of Hes genes in neural development. Dev Growth Differ. 2008;50(Suppl 1):S97–103.

    Article  PubMed  CAS  Google Scholar 

  110. Swearingen ML, Sun D, Bourner M, Weinstein EJ. Detection of differentially expressed HES-6 gene in metastatic colon carcinoma by combination of suppression subtractive hybridization and cDNA library array. Cancer Lett. 2003; 198(2):229–39.

    Google Scholar 

  111. Gottenberg JE, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc Natl Acad Sci USA. 2006;103:2770–5. doi:10.1073/pnas.0510837103.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was supported by a grant from the National Institutes of Health and funds from M. D. Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W. Molecular Characterization of Human Plasmacytoid Dendritic Cells. J Clin Immunol 29, 257–264 (2009). https://doi.org/10.1007/s10875-009-9284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9284-x

Keywords

Navigation