Skip to main content

Advertisement

Log in

Role of TGF-β in the Induction of Foxp3 Expression and T Regulatory Cell Function

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

A number of studies have suggested that transforming growth factor beta (TGF-β) plays a critical role in immune suppression mediated by Foxp3+ regulatory T cells. TGF-β in concert with interleukin 2 is a potent induction factor for the differentiation of Foxp3+ Treg from naive precursors. Polyclonal TGF-β-induced Treg (iTreg) are capable of preventing the autoimmune syndrome that develops in scurfy mice that lack Foxp3+ Treg. Antigen-specific iTreg can be used to both prevent and treat autoimmune gastritis that is induced by transfer of naive or primed autoantigen-specific T cells. TGF-β complexed with latency-associated peptide is expressed on the surface of activated thymus-derived Treg. Coculture of activated Treg with naive responder T cells results in the de novo generation of fully functional Foxp3+ T cells in a contact-dependent and TGF-β-dependent manner.

Conclusions and Speculations

Generation of functional Foxp3+ T cells via this pathway may represent a mechanism by which Treg maintain tolerance and expand their repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J Exp Med. 2001;194:629–44.

    Article  PubMed  CAS  Google Scholar 

  2. Piccirillo CA, Letterio JJ, Thornton AM, et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J Exp Med. 2002;196:237–45.

    Article  PubMed  CAS  Google Scholar 

  3. Mamura M, Lee W, Sullivan TJ, et al. CD28 disruption exacerbates inflammation in Tgf-β−/− mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-β1. Blood 2004;103:4594–601.

    Article  PubMed  CAS  Google Scholar 

  4. Powrie F, Carlino J, Leach MW, et al. A critical role for transforming growth factor-beta but not interleukin 4 in suppression of T helper type-1 mediated colitis by CD45RBlow CD4+ T cells. J Exp Med. 1996;183:2669–74.

    Article  PubMed  CAS  Google Scholar 

  5. Chen ML, Pittet MJ, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc Natl Acad Sci USA. 2005;102:419–24.

    Article  PubMed  CAS  Google Scholar 

  6. Green EA, Gorelik L, McGregor CM, et al. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β–TGF-β receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA. 2003;100:10878–83.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura K, Kitani A, Fuss I, et al. TGF-β1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol. 2004;172:834–42.

    PubMed  CAS  Google Scholar 

  8. Kullberg M, Hay V, Cheever AW, et al. TGF-β1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur J Immunol. 2005;35:2886–95.

    Article  PubMed  CAS  Google Scholar 

  9. Marie JC, Letterio JJ, Gavin M, et al. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:1061–7.

    Article  PubMed  CAS  Google Scholar 

  10. Fahlen L, Read S, Gorelik L, et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:737–46.

    Article  PubMed  CAS  Google Scholar 

  11. Peng Y, Laouar Y, Li MO, et al. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA. 2004;101:4572–7.

    Article  PubMed  CAS  Google Scholar 

  12. Marie JC, Liggitt D, Rudensky YA. Cellular mechanisms of fatal early-onset autoimmunity in mice with T cell-specific targeting of transforming growth factor-β receptor. Immunity 2006;25:441–54.

    Article  PubMed  CAS  Google Scholar 

  13. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25 naïve T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

    Article  PubMed  CAS  Google Scholar 

  14. Davidson TS, DiPaolo RJ, Andersson J, et al. Cutting edge: IL-2 is essential for TGF-β-mediated induction of Foxp3+ T regulatory cells. J Immunol. 2007;178:4022–6.

    PubMed  CAS  Google Scholar 

  15. Huter EN, Punkosdy GA, Glass DD, et al. TGF-β-induced Foxp3+ regulatory T cells rescue scurfy mice. Eur J Immunol. 2008;38: In Press.

  16. DiPaolo RJ, Brinster C, Davidson TS, et al. Autoantigen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol. 2007;179:4685–93.

    PubMed  CAS  Google Scholar 

  17. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007;26:1–13.

    Article  Google Scholar 

  18. Pesu M, Watford, WT, Wei L, et al. T cell-expressed proprotein convertase furin is essential for maintenance of peripheral tolerance. Nature. 2008; in press.

  19. Qin S, Cobbold SP, Pope H, et al. “Infectious” transplantation tolerance. Science 1993;259:974–7.

    Article  PubMed  CAS  Google Scholar 

  20. Andersson J, Tran DQ, Pesu M, et al. CD4+CD25+ regulatory T cells confer infectious tolerance in a TGF-β-dependent manner. J Exp Med. 2008; in press.

  21. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naïve human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007;110:2983–90.

    Article  PubMed  CAS  Google Scholar 

  22. Daley SR, Ma J, Adams E, et al. A key role for TGF-β signalling to T cells in the long-term acceptance of allografts. J Immunol. 2007;179:3648–54.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan M. Shevach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevach, E.M., Davidson, T.S., Huter, E.N. et al. Role of TGF-β in the Induction of Foxp3 Expression and T Regulatory Cell Function. J Clin Immunol 28, 640–646 (2008). https://doi.org/10.1007/s10875-008-9240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9240-1

Keywords

Navigation