Skip to main content
Log in

Detection of nitric acid (HNO3) in the atmosphere using the LOPAP technique

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A new instrument (LOPAP: LOng Path liquid Absorption Photometer) for the sensitive detection of nitric acid (HNO3) in the atmosphere is described. HNO3 is sampled in a temperature controlled stripping coil mounted in an external sampling module to minimize sampling artefacts in sampling lines. After conversion into a strongly absorbing dye, HNO3 is detected in long path absorption in special Teflon® AF 2400 tubes used as liquid core wave guides. For the correction of some interferences, due to for example HONO and particle nitrate, two channels are used in series. The interferences from several potential interfering compounds including particle nitrate were quantified in the laboratory and in a large outdoor simulation chamber. With the exception of the interference caused by N2O5, which is quantitatively measured by the instrument, all tested interferences can be corrected under atmospheric conditions. Thus, in the instrument only the sum of N(V) from HNO3 and N2O5 is determined, which is expected to be a common problem of wet chemical HNO3 instruments. The instrument has a detection limit of 5–30 pptv for a time response of 6–2 min, respectively and was validated against the FTIR technique in a large outdoor simulation chamber. In addition, the applicability of the instrument was demonstrated in a field campaign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acker, K., Spindler, G., Brüggemann, E.: Nitrous and nitric acid measurements during the INTERCOMP2000 campaign in Melpitz. Atmos. Environ. 38, 6497–6505 (2004)

    Article  Google Scholar 

  • Appel, B.R., Wall, S.M., Tokiwa, Y., Haik, M.: Simultaneous nitric acid, particulate nitrate and acidity measurements in ambient air. Atmos. Environ. 14, 549–554 (1980)

    Article  Google Scholar 

  • Appel, B.R., Tokiwa, Y., Haik, M.: Sampling of nitrates in ambient air. Atmos. Environ. 15, 283–289 (1981)

    Article  Google Scholar 

  • Appel, B.R., Povard, V., Kothny, E.L.: Loss of nitric acid within inlet devices intended to exclude coarse particles during atmospheric sampling. Atmos. Environ. 22, 2535–2540 (1988)

    Article  Google Scholar 

  • Arnold, F., Hauck, G.: Lower stratospheric trace gas detection using aircraft-borne active chemical ionisation mass spectroscopy. Nature 315, 307–309 (1985)

    Article  Google Scholar 

  • Bai, H., Lu, C., Chang, K.-F., Fang, G.-C.: Sources of sampling errors for field measurements of nitric acid gas by a Denuder system. Atmos. Environ. 37, 941–947 (2003)

    Article  Google Scholar 

  • Ballenthin, J.O., Thorn, W.F., Miller, T.M., Viggiano, A.A., Hunton, D.E., Koike, M., Kondo, Y., Takegawa, N., Irie, H., Ikeda, H.: In situ HNO3 and NO y instrument comparison during SOLVE, J. Geophys. Res. 108, 4188, DOI 10.1029/2002JD002136 (2003)

  • Becker, K.H.: In: The European Photoreactor EUPHORE; Final Report of the EC-Project EUPHORE, Contract EV5V-CT92-0059 (1996)

  • Brown, S.S., Stark, H., Ciciora, S.J., McLaughlin, R.J., Ravishankara, A.R.: Simultaneous in situ detection of NO3 and N2O5 via cavity ring-down spectroscopy. Rev. Sci. Instrum. 73, 3291–3301 (2002)

    Article  Google Scholar 

  • Brown, S.S., Stark, H., Ravishankara, A.R.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5. J. Geophys. Res. 108, 4539, DOI 10.1029/2003JD003407 (2003)

    Article  Google Scholar 

  • Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A.: Chemical mechanisms of acid generation in the troposphere. Nature 317, 27–35, (1985)

    Article  Google Scholar 

  • Day, D.A., Wooldridge, P.J., Dillon, M.B., Thornton, J.A., Cohen, R.C.: A thermal dissociation laser-induced fluorescence instrument for the in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. J. Geophys. Res. 107, 10.1029/2001JD000779 (2002)

    Google Scholar 

  • DeMore, W.P., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., Molina, M.J.: Chemical kinetics and photochemical data for use in stratospheric modeling. JPL Publication 97-4, Pasadena, California (1997)

  • Fahey, D.W., Eubank, C.S., Hübler, G., Fehsenfeld, F.C.: Evaluation of a catalytic reduction technique for the measurement of total odd-nitrogen NO y in the atmosphere. J. Atmos. Chem. 3, 435–468 (1985)

    Article  Google Scholar 

  • Febo, A., Perrino, C., Cortiello, M.: A Denuder technique for the measurement of nitrous acid in urban atmospheres. Atmos. Environ. 27A, 1721–1728 (1993)

    Google Scholar 

  • Ferm, M., Samuelsson, U., Sjödin, A., Grennfelt, P.: Long range transport of gaseous and particulate oxidized nitrogen compounds. Atmos. Environ. 18, 1731–1735 (1984)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts J.N. Jr.: Chemistry of the upper and lower atmosphere. Academic, New York (2000)

    Google Scholar 

  • Flaud, J.-M., Brizzi, G., Carlotti, M., Perrin, A., Ridolfi, M.: MIPAS database: Validation of HNO3 line parameters using MIPAS satellite measurements. Atmos. Chem. Phys. 6, 5037–5048 (2006)

    Google Scholar 

  • Genfa, Z., Slanina, S., Boring, C.B., Jongejan, P.A.C., Dasgupta, K.: Continuous wet denuder measurements of atmospheric nitric and nitrous acid during the 1999 Atlanta supersite. Atmos. Environ. 37, 1351–1364 (2003)

    Article  Google Scholar 

  • Goldan, P.D., Kuster, W.C., Albritton, D.L., Fehsenfeld, F.C., Connell, P.S., Norton, R.B.: Calibration and tests of the filter-collection methode for measuring clean-air, ambient levels of nitric acid. Atmos. Environ. 17, 1355–1364 (1983)

    Article  Google Scholar 

  • Grasshoff, K., Ehrhardt, M., Kremling, K.: Methods of seawater analysis, 2nd ed., pp. 139–147. Verlag Chemie, Weinheim (1983)

    Google Scholar 

  • Hallquist, M., Stewart, D.J., Baker, J., Cox, R.A.: Hydrolysis of N2O5 on submicron sulfuric acid aerosols. J. Phys. Chem. 104, 3984–3990 (2000)

    Google Scholar 

  • Hanke, M., Umann, B., Uecker, J., Arnold, F., Bunz, H.: Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionisation mass spectroscopy during the MINATROC Field Campaign 2000 on Monte Cimone. Atmos. Chem. Phys. 3, 417–436 (2003)

    Article  Google Scholar 

  • Heland, J., Kleffmann, J., Kurtenbach, R., Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ. Sci. Technol. 35, 3207–3212 (2001)

    Article  Google Scholar 

  • Huang, G., Zhou, X., Deng, G., Qiao, H., Civerolo, K.: Measurements of atmospheric nitrous acid and nitric acid. Atmos. Environ. 36, 2225–2235 (2002)

    Article  Google Scholar 

  • Jacob, D.J.: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131–2159 (2000)

    Article  Google Scholar 

  • Johnston, H.S.: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173, 517–522 (1971)

    Article  Google Scholar 

  • Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J.C., Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ. Sci. Pollut. Res. 9(special issue 4), 48–54 (2002)

    Google Scholar 

  • Kleffmann, J., Benter, T., Wiesen, P.: Heterogeneous reaction of nitric acid with nitric oxide on glass surfaces under simulated atmospheric conditions. J. Phys. Chem. A 108, 5793–5799 (2004)

    Article  Google Scholar 

  • Kleffmann, J., Lörzer, J.C., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Rodenas, M., Wirtz, K.: Intercomparisons of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO) in the atmosphere. Atmos. Environ. 40, 3640–3652 (2006)

    Article  Google Scholar 

  • Li-Jones, X., Savoie, D.L., Prospero, J.M.: HNO3 losses within the cyclone inlet of a diffusion-denuder under simulated marine environments. Atmos. Environ. 35, 985–993 (2001)

    Article  Google Scholar 

  • Neuman, J.A., Huey, J.G., Ryerson, T.B., Fahey, D.W.: Study of inlet materials for sampling atmospheric nitric acid. Environ. Sci. Technol. 33, 1133–1136 (1999)

    Article  Google Scholar 

  • Neuman, J.A., Gao, R.S., Schein, M.E., Ciciora, S.J., Holecek, J.C., Thompson, T.L., Winkler, R.H., McLaughlin, R.J., Northway, M.J., Richard, E.C., Fahey, D.W.: A fast-response chemical ionization mass spectrometer for in situ measurement of HNO3 in the upper troposphere and lower stratosphere. Rev. Sci. Instrum. 71, 3886–3894 (2000)

    Article  Google Scholar 

  • Nydahl, F.: On the optimum conditions for the reduction of nitrate to nitrite by cadmium. Talanta 23, 349–357 (1976)

    Article  Google Scholar 

  • Oms, M.T., Jongejan, P.A.C., Veltkamp, A.C., Wyers, G.P., Slanina, J.: Continuous monitoring of atmospheric HCl, HNO3 and SO2 by wet-annular denuder air sampling with on-line chromatographic analysis. Int. J. Environ. Anal. Chem. 62, 207–218 (1996)

    Article  Google Scholar 

  • Park, J.-Y., Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 92, 6294–6302 (1988)

    Article  Google Scholar 

  • Sanhueza, E., Plum, C.N., Pitts J.N. Jr.: Positive interference of nitrous acid in the determination of gaseous HNO3 by the NO x chemiluminescence-nylon cartridge method: applications to measurements of ppb levels of HONO in air. Atmos. Environ. 18, 1029–1031 (1984)

    Article  Google Scholar 

  • Schütze, M., Herrmann, H.: Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops. Chem. Phys. Phys. Chem. 4, 60–67 (2002)

    Article  Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and Physics. Wiley, New York (1998)

    Google Scholar 

  • Simon, P.K., Dasgupta, P.K.: Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate. Environ. Sci. Technol. 29, 1534–1541 (1995)

    Article  Google Scholar 

  • Večeřa, Z., Dasgupta, P.K.: Measurement of atmospheric nitric and nitrous acid with a wet effluent diffusion denuder and low-pressure ion chromatography-postcolumn reaction detection. Anal. Chem. 63, 2210–2216 (1991)

    Article  Google Scholar 

  • Wennberg, P.O., Cohen, R.C., Stimpfle, R.M., Koplow, J.P., Anderson, J.G., Salawitch, R.J., Fahey, D.W., Woodbridge, E.L., Keim, E.R., Gao, R.S., Webster, C.R., May, R.D., Toohey, D.W., Avallone, L.M., Proffitt, M.H., Loewenstein, M.J., Podolske, R., Chan, K.R., Wofsy, S.C.: Removal of stratospheric O3 by radicals: in situ measurements of OH, HO2, NO, NO2, ClO, and BrO. Science 266, 398–404 (1994)

    Article  Google Scholar 

  • Wirtz, K.: Private communication, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM) (2004)

  • Wood, E.C., Wooldridge, P.J., Freese, J.H., Albrecht, T., Cohen, R.C.: Prototype for in situ detection of atmospheric NO3 and N2O5 via laser-induced fluorescence. Environ. Sci. Technol. 37(24), 5732–5738, DOI 10.1021/es034507w (2003)

    Article  Google Scholar 

  • Wood, S.W., Batchelor, R.L., Godman, A., Rinsland, C.P., Connor, B.J., Murcray, F.J., Stephen, T.M., Heuff, D.N.: Bround-based nitric acid measurements at arrival heights, Antarctica, using solar and lunar fourier transform infrared observations. J. Geophys. Res. 109, D18307, DOI 10.1029/2004JD004665 (2004)

    Article  Google Scholar 

  • Yamamoto, M., Tamaki, M., Bandow, H., Meada, Y.: HNO3 analyser and the NO–ozone chemiluminescence methode. Atmos. Environ. 35, 5339–5346 (2001)

    Article  Google Scholar 

  • Yao, W., Byrne, R.H., Waterbury, R.D.: Determination of nanomolar concentrations of nitrite and nitrate in natural waters using long path length absorbance spectroscopy. Environ. Sci. Technol. 32, 2646–2649 (1998)

    Article  Google Scholar 

  • Zellweger, C., Ammann, M., Hofer, P., Baltensperger, U.: NO y Speciation with a combined wet effluent diffusion denuder–aerosol collector coupled to ion chromatography. Atmos. Environ. 33, 1131–1140 (1999)

    Article  Google Scholar 

  • Zhang, J.-Z., Ortner, P.B., Fischer, J.: Determination of nitrate and nitrite in estuarine and coastal waters by gas segmented continuous flow colorimetric analysis. EPA Method 353.4, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268 (1997)

  • Zondlo, M.A., Mauldin, R.L., Kosciuch, E., Cantrell, C.A., Eisele, F.L.: Development and characterization of an airborne-based instrument used to measure nitric acid during the NASA Transport and Chemical Evolution over the Pacific field experiment, J. Geophys. Res. 108, 8793, DOI 10.1029/2002JD003234 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

The financial support by the German Environment Foundation (Deutsche Bundesstiftung Umwelt - DBU), Contract no. 19142, the European Commission within the EUROCHAMP project, Contract no. RII3-CT-2004-505968, and the continuous technical support by QUMA Elektronik & Analytik GmbH, Wuppertal, Germany during the development of the HNO3 instrument is gratefully acknowledged. In addition, the authors are indebted to Dr. Klaus Wirtz and Dr. M. Martin Reviejo, Centro de Estudios Ambientales del Mediterraneo (CEAM), for providing the simulation chamber data. DuPont is gratefully acknowledged for the license agreement for the scientific use of the Teflon® AF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kleffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleffmann, J., Gavriloaiei, T., Elshorbany, Y. et al. Detection of nitric acid (HNO3) in the atmosphere using the LOPAP technique. J Atmos Chem 58, 131–149 (2007). https://doi.org/10.1007/s10874-007-9083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-007-9083-9

Keywords

Navigation