Skip to main content
Log in

Application of Non-Ionic Solid Sorbents (XAD Resins) for the Isolation and Fractionation of Water-Soluble Organic Compounds from Atmospheric Aerosols

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A detailed procedure using non-ionic macropourous XAD-8 and XAD-4 resins is presented for the isolation and fractionation of aerosol water-soluble organic compounds (WSOC) from aerosol samples. The procedure entails adsorption of WSOC fraction onto XAD-8 and XAD-4 resins, desalting of the adsorbed organic material with ultra-pure water, elution of the retained organic matter with 40% MeOH solution and freeze-drying. Due to resin’s different properties and to certain hydrophobic/hydrophilic interactions between the resin polymers and the organic matter, two major fractions were obtained; namely the XAD-8 and the XAD-4 eluates. The XAD-8 eluate, which accounts for 55–60% of total aerosol WSOC, is represented by partially acidic compounds with significant hydrophobic moieties. The XAD-4 fraction holds few conjugated systems and a higher content of hydrophilic structures with low molecular size, and accounts for 9% of total WSOC. The isolated WSOC sub-fractions were nearly free from inorganic species, and successful recoveries of organic matter from the resins were accomplished. With this procedure the XAD-8 eluate yields a mixture representative of those WSOC that are highly conjugated compounds in atmospheric aerosols. It also allows a successful characterisation of the organic material by advanced analytical techniques without the interference of inorganic species present in the original sample of atmospheric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. R., 1988: A critical evaluation of the use of macroporous resins for the isolation of aquatic humic substances, in F. H. Frimmel and R. F. Christman (eds), Humic Substances and Their Role in the Environment, Wiley, Chichester, pp. 15–27.

    Google Scholar 

  • Andracchio, A., Cavicchi, C., Tonelli, D., and Zappoli, S., 2002: A new approach for the fractionation of water-soluble organic carbon in atmospheric aerosols and cloud drops, Atmos. Environ. 36, 5097–5107.

    Article  Google Scholar 

  • Boerschke, R. C., Gallie, E. A., Belzile, N., Gedye, R. N., and Morris, J. R., 1996: Quantitative elemental and structural analysis of dissolved organic carbon fractions from lakes near Sudbury, Ontario, Can. J. Chem. 74, 2460–2470.

    Google Scholar 

  • Burba, P., Shkinev, V., and Spivakov, B. Ya., 1995: On-line fractionation and characterization of aquatic humic substances by means of sequential-tage ultrafiltration, Fresenius J. Anal. Chem. 351, 74–82.

    Article  Google Scholar 

  • Chin, Ya-P., Aiken, G., and O’Loughlln, E., 1994: Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol. 18, 1853–1858.

    Article  Google Scholar 

  • Decesari, S., Facchini, M. C., Fuzzi, S., and Tagliavini, E., 2000: Characterization of water-soluble organic compounds in atmospheric aerosols: A new approach, J. Geophys. Res. 105, 1481– 1489.

    Article  Google Scholar 

  • Duarte, R. M. B. O., Santos, E. B. H., and Duarte, A. C., 2003: Structural characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent, Wat. Res. 37, 4073–4080.

    Article  Google Scholar 

  • Duarte, R. M. B. O., Pio, C. A., and Duarte, A. C., 2004: Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions, Analytica Chimica Acta, in press.

  • Esteves, V. I., Cordeiro, N. M. A., and Duarte, A. C., 1995: Variation on the adsorption efficiency of humic substances from estuarine waters using XAD resins, Mar. Chem. 51, 61–66.

    Article  Google Scholar 

  • Facchini, M. C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencsér, A., Kiss, G., Krivácsy, Z., Mészáros, E., Hansson, H. C., Alsberg, T., and Zebühr, Y., 1999: Partitioning of the organic aerosol component between fog droplets and interstitial air, J. Geophys. Res. 104, 26,821–26,832.

    Google Scholar 

  • Geléncser, A., Mészáros, T., Blazsó, M., Kiss, G., Krivácsy, Z., Molnár, A., and Mészáros, E., 2000: Structural characterisation of organic matter in fine tropospheric aerosol by pyrolysis-gas chromatography-mass spectrometry, J. Atmos. Chem. 37, 173–183.

    Article  Google Scholar 

  • Havers, N., Burba, P., Lambert, J., and Klockow, D., 1998: Spectroscopic characterization of humic-like substances in airborne particulate matter, J. Atmos. Chem. 29, 45–54.

    Article  Google Scholar 

  • Kiss, G., Varga, B., Galambos, I., and Ganszky I., 2002: Characterisation of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res. 107, D21, 8339, doi: 10.1029/ 2001JD000603.

    Article  Google Scholar 

  • Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Zs., Gelencsér, A., Molnár, Á., Fuzzi, S., Facchini, M. C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H. C., and Persson, L., 2000: Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis, Atmos. Environ. 34, 4273–4281.

    Article  Google Scholar 

  • Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Zs., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S., and Weingartner, E., 2001: Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem. 39, 235–259.

    Article  Google Scholar 

  • Malcolm, R. L., 1991: Factors to be considered in the isolation and characterisation of aquatic humic substances, in B. Allard, H. Boren and A. Grimvall (eds), Humic substances in the aquatic and terrestrial environment, Proceedings of an International Symposium, Linköping, Sweden, pp. 9–36.

  • Peuravuori, J., Pihlaja, K., and Välimäki, N., 1997: Isolation and characterisation of natural organic matter from lake water: Two different adsorption chromatographic methods, Environ. Intern. 23, 453–464.

    Article  Google Scholar 

  • Peuravuori, J. and Pihlaja, K., 1997: Molecular size distribution and spectroscopic properties of aquatic humic substances, Anal. Chim. Acta 337, 133–149.

    Article  Google Scholar 

  • Peuravuori, J., Koivikko, R., and Pihlaja, K., 2002: Characterization, differentiation and classification of aquatic humic matter separated by different sorbents: Synchronous fluorescence spectroscopy, Wat. Res. 36, 4552–4562.

    Article  Google Scholar 

  • Pio, C. A., Castro, L. M., and Ramos, M. O., 1994: Differentiated Determination of Organic and Elemental Carbon in Atmospheric Aerosol Particles by a Thermal-Optical Method, in G. Angeletti and G. Restelli (eds), Report EUR 15609/2 EN, Physico-Chemical Behaviour of Atmospheric Pollutants, Proceedings of the Sixth European Symposium, Volume 2, Varese 18–22 October 1993, pp. 706–711.

  • Santos, E. B. H. and Duarte, A. C., 1998: The influence of pulp and paper mill effluents on the composition of the humic fraction of aquatic organic matter, Wat. Res. 32, 597–608.

    Article  Google Scholar 

  • Santos, E. B. H., Filipe, O. M. S., Duarte, R. M. B. O., Pinto, H., and Duarte A. C., 2001: Fluorescence as a tool for tracing the organic contamination from pulp mill effluents in surface waters, Acta Hydrochim. Et Hydrobiol. 28, 364–371.

    Article  Google Scholar 

  • Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57–109.

    Article  Google Scholar 

  • Traina, S. J., Novakov, J., and Smeck, N. E., 1990: An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. J. Environ. Qual. 19, 151–153.

    Google Scholar 

  • Varga, B., Kiss, G., Ganszky, I., Gelencsér A., and Krivácsy. Z., 2001: Isolation of water-soluble organic matter from atmospheric aerosol, Talanta 55, 561–572.

    Article  Google Scholar 

  • Wangersky, P. J., 1993: Dissolved organic carbon methods: A critical review, Mar Chem. 41, 61–74.

    Article  Google Scholar 

  • Williams, D. H., and Fleming, I., 1973: Spectroscopy Methods in Organic Chemistry, McGraw-Hill, London, pp. 1–34.

    Google Scholar 

  • Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencsér, A., Kiss, G., Krivácsy, Z., Molnár, Á., Mészáros, E., Hansson, H. C., Rosman, K., and Zebühr, Y., 1999: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ. 33, 2733–2743.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina M. B. O. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, R.M.B.O., Duarte, A.C. Application of Non-Ionic Solid Sorbents (XAD Resins) for the Isolation and Fractionation of Water-Soluble Organic Compounds from Atmospheric Aerosols. J Atmos Chem 51, 79–93 (2005). https://doi.org/10.1007/s10874-005-8091-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-005-8091-x

Key Words

Navigation