Skip to main content
Log in

Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater around the Juan de Fuca Ridge

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A central theme of the ongoing GEOTRACES program is to improve the understanding of processes occurring at ocean interfaces with continents, sediments, and ocean crust. In this context, we studied the distributions of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb around the Juan de Fuca Ridge (JdFR) in total dissolvable (td), dissolved (d), and labile particulate (lp) fractions, which represent a fraction in unfiltered samples, filtered samples through an AcroPak capsule filter, and the difference between td and d, respectively. Al and Fe were dominated by lp-species, while Ni, Zn, and Cd were dominated by d-species with undetectable amounts of lp-species. Major findings in this study are as follows: (1) The continental margin (CM) provided large sources of Al, Mn, Fe, and Co from the surface to ~2000 m in depth. The supply from CM caused high surface concentrations of dMn and dCo, a subsurface (100–300 m depth) maximum of dCo, and intermediate (500–2000 m depth) maxima of lpAl and lpFe. The supply of dFe from CM was ~10 times that from the high-temperature hydrothermal activity at station BD21, which is located at ~3 km from the Middle Valley venting site and ~ 200 km from Vancouver Island. (2) DPb was maximum at the top layer of North Pacific Intermediate Water, probably owing to isopycnal transport of anthropogenic Pb via advection of subducted surface waters. Although dCo and dPb had different sources in the upper water, they showed a strong linearity below 300 m (r 2 = 0.95, n = 38), indicating concurrent scavenging. (3) A high-temperature hydrothermal plume occurred at a depth of 2300 m at BD21, accounting for maxima of dAl, dMn, dFe, lpCu, and lpPb and a minimum of dCu. (4) Strong bottom maxima of lpAl, lpMn, lpFe, lpCo, and lpPb occurred above the abyssal plain at the western foot of the JdFR, indicating resuspension of sediments. However, bottom maxima of d-species were apparent only for dAl and dCu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

JdFR:

Juan de Fuca Ridge

td:

Total dissolvable

d:

Dissolved

lp:

Labile particulate

NPIW:

North Pacific Intermediate Water

PDW:

Pacific Deep Water

CM:

Continental margin

References

  • Ames DE, Franklin JM, Hannington MD (1993) Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge; an evolving hydrothermal system. Can Mineral 31(4):997–1024

    Google Scholar 

  • Baker ET, Massoth GJ, Feely RA (1987) Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329(6135):149–151. doi:10.1038/329149a0

    Article  Google Scholar 

  • Baker ET, Lavelle JW, Feely RA, Massoth GJ, Walker SL, Lupton JE (1989) Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. J Geophys Res 94(B7):9237–9250. doi:10.1029/JB094iB07p09237

    Article  Google Scholar 

  • Beaulieu SE, Baker ET, German CR, Maffei A (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem Geophys Geosyst 14(11):4892–4905. doi:10.1002/2013GC004998

    Article  Google Scholar 

  • Biller DV, Bruland KW (2013) Sources and distributions of Mn, Fe Co, Ni, Cu, Zn, and Cd relative to macronutrients along the central California coast during the spring and summer upwelling season. Mar Chem 155:50–70. doi:10.1016/j.marchem.2013.06.003

    Article  Google Scholar 

  • Bostock HC, Opdyke BN, Williams MJM (2010) Characterising the intermediate depth waters of the Pacific Ocean using & δ 13and other geochemical tracers. Deep-Sea Res I 57(7):847–859. doi:10.1016/j.dsr.2010.04.005

    Article  Google Scholar 

  • Boyle EA, Sclater FR, Edmond JM (1977) The distribution of dissolved copper in the Pacific. Earth Planet Sci Lett 37(1):38–54. doi:10.1016/0012-821X(77)90144-3

    Article  Google Scholar 

  • Brown MT, Lippiatt SM, Bruland KW (2010) Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar Chem 122(1–4):160–175. doi:10.1016/j.marchem.2010.04.002

    Article  Google Scholar 

  • Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47(2):176–198. doi:10.1016/0012-821x(80)90035-7

    Article  Google Scholar 

  • Bruland KW, Knauer GA, Martin JH (1978) Cadmium in northeast Pacific waters 1. Limnol Oceanogr 23(4):618–625. doi:10.4319/lo.1978.23.4.0618

    Article  Google Scholar 

  • Burton JD, Statham PJ, Elderfield H (1988) Trace Metals as Tracers in the Ocean [and Discussion]. Philos Trans R Soc Lond A 325(1583):127–145

    Article  Google Scholar 

  • Butterfield DA, McDuff RE, Franklin J, Wheat CG (1994) Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge1. Proc Ocean Drill Progr Sci Results 139:395–410

    Google Scholar 

  • Cameron V, Vance D (2014) Heavy nickel isotope compositions in rivers and the oceans. Geochim Cosmochim Acta 128:195–211. doi:10.1016/j.gca.2013.12.007

    Article  Google Scholar 

  • Chase Z, Johnson KS, Elrod VA, Plant JN, Fitzwater SE, Pickell L, Sakamoto CM (2005) Manganese and iron distributions off central California influenced by upwelling and shelf width. Mar Chem 95(3–4):235–254. doi:10.1016/j.marchem.2004.09.006

    Article  Google Scholar 

  • Cid AP, Urushihara S, Minami T, Norisuye K, Sohrin Y (2011) Stoichiometry among bioactive trace metals in seawater on the Bering Sea shelf. J Oceanogr 67(6):747–764. doi:10.1007/s10872-011-0070-z

    Article  Google Scholar 

  • Cid AP, Nakatsuka S, Sohrin Y (2012) Stoichiometry among bioactive trace metals in the Chukchi and Beaufort Seas. J Oceanogr 68(6):985–1001. doi:10.1007/s10872-012-0150-8

    Article  Google Scholar 

  • Conway TM, John SG (2015) The cycling of iron, zinc and cadmium in the North East Pacific Ocean—insights from stable isotopes. Geochim Cosmochim Acta 164:262–283. doi:10.1016/j.gca.2015.05.023

    Article  Google Scholar 

  • Davis EE, Goodfellow WD, Bornhold BD, Adshead J, Blaise B, Villinger H, Le Cheminant GM (1987) Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth Planet Sci Lett 82(1–2):49–61. doi:10.1016/0012-821X(87)90106-3

    Article  Google Scholar 

  • Ezoe M, Ishita T, Kinugasa M, Lai X, Norisuye K, Sohrin Y (2004) Distributions of dissolved and acid-dissolvable bioactive trace metals in the North Pacific. Geochem J 38(6):535–550

    Article  Google Scholar 

  • Feely RA, Massoth GJ, Baker ET, Cowen JP, Lamb MF, Krogslund KA (1990) The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet Sci Lett 96(3–4):305–318. doi:10.1016/0012-821X(90)90009-M

    Article  Google Scholar 

  • Feely RA, Massoth GJ, Baker ET, Lebon GT, Geiselman TL (1992) Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions. J Geophys Res 97(B3):3457–3468. doi:10.1029/91JB03062

    Article  Google Scholar 

  • Fujishima Y, Ueda K, Maruo M, Nakayama E, Tokutome C, Hasegawa H, Matsui M, Sohrin Y (2001) Distribution of trace bioelements in the subarctic North Pacific Ocean and the Bering Sea (the R/V Hakuho Maru Cruise KH-97-2). J Oceanogr 57(3):261–273. doi:10.1023/A:1012426411228

    Article  Google Scholar 

  • German CR, Campbell AC, Edmond JM (1991) Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes. Earth Planet Sci Lett 107(1):101–114. doi:10.1016/0012-821x(91)90047-l

    Article  Google Scholar 

  • Han Q, Moore JK, Zender C, Measures C, Hydes D (2008) Constraining oceanic dust deposition using surface ocean dissolved Al. Global Biogeochem Cy. doi:10.1029/2007gb002975

    Google Scholar 

  • Huyer A (1983) Coastal upwelling in the California current system. Progr Oceanogr 12(3):259–284. doi:10.1016/0079-6611(83)90010-1

    Article  Google Scholar 

  • Hwang J, Druffel ERM, Eglinton TI (2010) Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles. Global Biogeochem Cy. doi:10.1029/2010GB003802

    Google Scholar 

  • Janssen DJ, Cullen JT (2015) Decoupling of zinc and silicic acid in the subarctic northeast Pacific interior. Mar ChemPart 177(1):124–133. doi:10.1016/j.marchem.2015.03.014

    Article  Google Scholar 

  • Janssen DJ, Conway TM, John SG, Christian JR, Kramer DI, Pedersen TF, Cullen JT (2014) Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proc Natl Acad Sci 111(19):6888–6893. doi:10.1073/pnas.1402388111

    Article  Google Scholar 

  • Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57(3):137–161. doi:10.1016/S0304-4203(97)00043-1

    Article  Google Scholar 

  • Lam PJ, Bishop JKB (2008) The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys Res Lett 35(7):L07608. doi:10.1029/2008gl033294

    Article  Google Scholar 

  • Landing WM, Bruland KW (1987) The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim Cosmochim Acta 51(1):29–43. doi:10.1016/0016-7037(87)90004-4

    Article  Google Scholar 

  • Lee J-M, Boyle EA, Echegoyen-Sanz Y, Fitzsimmons JN, Zhang R, Kayser RA (2011) Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry. Anal Chim Acta 686(1–2):93–101

    Article  Google Scholar 

  • Lippiatt SM, Lohan MC, Bruland KW (2010) The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar Chem 121(1–4):187–199. doi:10.1016/j.marchem.2010.04.007

    Article  Google Scholar 

  • Lohan MC, Statham PJ, Crawford DW (2002) Total dissolved zinc in the upper water column of the subarctic North East Pacific. Deep-Sea Res II 49(24–25):5793–5808. doi:10.1016/S0967-0645(02)00215-1

    Article  Google Scholar 

  • Martin JH, Michael Gordon R (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res A 35(2):177–196. doi:10.1016/0198-0149(88)90035-0

    Article  Google Scholar 

  • Martin JH, Knauer GA, Broenkow WW (1985) VERTEX: the lateral transport of manganese in the northeast Pacific. Deep-Sea Res A 32(11):1405–1427. doi:10.1016/0198-0149(85)90056-1

    Article  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater S, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res A 36(5):649–680. doi:10.1016/0198-0149(89)90144-1

    Article  Google Scholar 

  • Minami T, Konagaya W, Zheng L, Takano S, Sasaki M, Murata R, Nakaguchi Y, Sohrin Y (2015) An off-line automated preconcentration system with ethylenediaminetriacetate chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled plasma mass spectrometry. Anal Chim Acta 854:183–190. doi:10.1016/j.aca.2014.11.016

    Article  Google Scholar 

  • Miura T, Suga T, Hanawa K (2002) Winter Mixed Layer and Formation of dichothermal water in the Bering Sea. J Oceanogr 58(6):815–823. doi:10.1023/A:1022871112946

    Article  Google Scholar 

  • Miura T, Suga T, Hanawa K (2003) Numerical study of formation of dichothermal water in the Bering Sea. J Oceanogr 59(3):369–376. doi:10.1023/A:1025524228857

    Article  Google Scholar 

  • Moffett JW, Ho J (1996) Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochim Cosmochim Acta 60(18):3415–3424

    Article  Google Scholar 

  • Moran SB, Moore RM (1991) The potential source of dissolved aluminum from resuspended sediments to the North Atlantic Deep Water. Geochim Cosmochim Acta 55(10):2745–2751. doi:10.1016/0016-7037(91)90441-7

    Article  Google Scholar 

  • Nishioka J, Nakatsuka T, Watanabe YW, Yasuda I, Kuma K, Ogawa H, Ebuchi N, Scherbinin A, Volkov YN, Shiraiwa T, Wakatsuchi M (2013) Intensive mixing along an island chain controls oceanic biogeochemical cycles. Global Biogeochem Cy 27(3):920–929. doi:10.1002/gbc.20088

    Article  Google Scholar 

  • Noble AE, Saito MA, Maiti K, Benitez-Nelson CR (2008) Cobalt, manganese, and iron near the Hawaiian Islands: a potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals. Deep-Sea Res II 55(10–13):1473–1490. doi:10.1016/j.dsr2.2008.02.010

    Article  Google Scholar 

  • Noriki S, Nakanishi K, Fukawa T, Uematsu M, Uchida T, Tsunogai S (1980) Use of a sealed Teflon vessel for the decomposition followed by the determination of chemical constituents of various marine samples. Bulletin of the Faculty of Fisheries-Hokkaido University, 31:345–361. 

  • Nozaki Y, Thomson J, Turekian KK (1976) The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth Planet Sci Lett 32(2):304–312. doi:10.1016/0012-821X(76)90070-4

    Article  Google Scholar 

  • Okubo A, Takeda S, Obata H (2013) Atmospheric deposition of trace metals to the western North Pacific Ocean observed at coastal station in Japan. Atmos Res 129–130:20–32. doi:10.1016/j.atmosres.2013.03.014

    Article  Google Scholar 

  • Orians KJ, Bruland KW (1986) The biogeochemistry of aluminum in the Pacific Ocean. Earth Planet Sci Lett 78(4):397–410. doi:10.1016/0012-821X(86)90006-3

    Article  Google Scholar 

  • Reid JL (1997) On the total geostrophic circulation of the pacific ocean: flow patterns, tracers, and transports. Progr Oceanogr 39(4):263–352. doi:10.1016/S0079-6611(97)00012-8

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The Crust. Treatise on Geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64

  • Schaule BK, Patterson CC (1981) Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth Planet Sci Lett 54(1):97–116. doi:10.1016/0012-821X(81)90072-8

    Article  Google Scholar 

  • Schlitzer R (2015) Ocean Data View. odvawide

  • SCOR Working Group (2007) GEOTRACES—an international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem Erde Geochem 67(2):85–131. doi:10.1016/j.chemer.2007.02.001

    Article  Google Scholar 

  • Sohrin Y, Bruland KW (2011) Global status of trace elements in the ocean. Trends Anal Chem 30(8):1291–1307. doi:10.1016/j.trac.2011.03.006

    Article  Google Scholar 

  • Sohrin Y, Urushihara S, Nakatsuka S, Kono T, Higo E, Minami T, Norisuye K, Umetani S (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Anal Chem 80(16):6267–6273. doi:10.1021/ac800500f

    Article  Google Scholar 

  • Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Progr Oceanogr 77(4):285–297. doi:10.1016/j.pocean.2006.12.005

    Article  Google Scholar 

  • Sunda WG (1989) Trace metal interactions with marine phytoplankton. Biol Oceanogr 6(5–6):411–442. doi:10.1080/01965581.1988.10749543

    Google Scholar 

  • Sunda WG (1994) Trace metal/phytoplankton interactions in the sea. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer, Dordrecht, pp 213–247

    Chapter  Google Scholar 

  • Tagliabue A, Aumont O, Bopp L (2014) The impact of different external sources of iron on the global carbon cycle. Geophys Res Lett 41(3):920–926. doi:10.1002/2013GL059059

    Article  Google Scholar 

  • Talley LD (1993) Distribution and formation of North Pacific intermediate water. J Phys Oceanogr 23(3):517–537

    Article  Google Scholar 

  • Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • van Hulten MMP, Sterl A, Middag R, de Baar HJW, Gehlen M, Dutay JC, Tagliabue A (2014) On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences 11(14):3757–3779. doi:10.5194/bg-11-3757-2014

    Article  Google Scholar 

  • Vu HTD, Sohrin Y (2013) Diverse stoichiometry of dissolved trace metals in the Indian Ocean. Sci Rep 3:1745. doi:10.1038/srep01745

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992

    Article  Google Scholar 

  • Wu J, Rember R, Jin M, Boyle EA, Flegal AR (2010) Isotopic evidence for the source of lead in the North Pacific abyssal water. Geochim Cosmochim Acta 74(16):4629–4638. doi:10.1016/j.gca.2010.05.017

    Article  Google Scholar 

Download references

Acknowledgements

We thank the crew, officers, captain, and scientists onboard R/V Hakuho Maru during the KH-12-4 cruise for their help with sampling and routine analysis. We also thank the three reviewers and editor Prof. Nishioka for their critical and insightful comments that helped to improve this manuscript. This work was financed through grants from the Steel Industry Foundation for the Advancement of Environmental Protection Technology and from Grant-in-Aid of Scientific Research, the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjie Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Minami, T., Takano, S. et al. Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater around the Juan de Fuca Ridge. J Oceanogr 73, 669–685 (2017). https://doi.org/10.1007/s10872-017-0424-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-017-0424-2

Keywords

Navigation