Skip to main content

Advertisement

Log in

Quantifying air–sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise

  • Short Contribution
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

To understand better the role of ocean surface chemical buffering capacity in mitigating the recent atmospheric CO2 rise, we investigated potentials of wintertime mixed-layer dissolved inorganic carbon (DIC) to increase after re-equilibration with decadal atmospheric CO2 rise and the corresponding anthropogenic CO2 accumulation rates, based upon carbonate system chemistry over the global ocean surface above the wintertime thermocline. This is an idealized study to quantify the isolated effect of atmospheric CO2 rise on the DIC content of the global mixed layer, assuming all else constant. Our results show that the potentials of wintertime DIC over the global open ocean surface to rise after re-equilibration with the elevated atmospheric CO2 mol fraction in a reference year 2000 ranged from 0.28 to 0.70 μmol kg−1 ppm−1 (ppm = parts of CO2 per million dry air), while the global mean wintertime sea surface DIC increase rate was close to 1.0 μmol kg−1 year−1. From 1995 to 2005, the decadal mean atmospheric CO2 rise implies an anthropogenic CO2 accumulation rate of 0.40 × 1015 g C year−1 within the global ocean surface. From the 1960s to 2000s, the air–sea re-equilibration-implied ocean surface anthropogenic CO2 accumulation rate may have increased by 46 % due to the accelerated atmospheric CO2 rise. However, the chemical buffering capacity within the ocean surface may have declined by 16 % during the same period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–72

    Article  Google Scholar 

  • Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9:2509–2522

    Article  Google Scholar 

  • Bates NR, Astor YM, Church MJ, Currie K, Dore JE, González-Dávila M, Lorenzoni L, Muller-Karger F, Olafsson J, Santana-Casiano JM (2014) A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27(1):126–141. doi:10.5670/oceanog.2014.16

    Article  Google Scholar 

  • Bolin B, Eriksson E (1959) Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. In: Bolin B (ed) The atmosphere and the sea in motion: scientific contributions to the Rossby memorial volume. The Rockefeller Institute Press, New York, pp 130–142

    Google Scholar 

  • Brewer PG (1983) Carbon dioxide in the oceans. Changing climate—report of the carbon dioxide assessment committee. National Academy Press, Washington, pp 188–215

    Google Scholar 

  • Broecker WS, Takahashi T, Simpson HH, Peng T-H (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418

    Article  Google Scholar 

  • Byrne RH, Mecking S, Feely RA, Liu X (2010) Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys Res Lett 37:L02601. doi:10.1029/2009GL040999

    Article  Google Scholar 

  • Caldeira K, Archer D, Barry JP, Bellerby RGJ, Brewer PG, Cao L, Dickson AG, Doney SC, Elderfield H, Fabry VJ, Feely RA, Gattuso J-P, Haugan PM, Hoegh-Guldberg O, Jain AK, Kleypas JA, Langdon C, Orr JC, Ridgwell A, Sabine CL, Seibel BA, Shirayama Y, Turley C, Watson AJ, Zeebe RE (2007) Comment on “Modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loáiciga. Geophys Res Lett 34:L18608. doi:10.1029/2006GL027288

    Article  Google Scholar 

  • Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J R Meteorol Soc 64:223–240

    Article  Google Scholar 

  • Charette MA, Smith WHF (2010) The volume of Earth’s ocean. Oceanography 23(2):112–114. doi:10.5670/oceanog.2010.51

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013, the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang C (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007, the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Dyrssen D, Sillén LG (1967) Alkalinity and total carbonate in sea water: a plea for p-T-independent data. Tellus 19:113–121

    Article  Google Scholar 

  • Egleston ES, Sabine CL, Morel FMM (2010) Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochem Cy 24:GB1002. doi:10.1029/2008GB003407

  • Feely RA, Sabine CL, Byrne RH, Millero FJ, Dickson AG, Wanninkhof R, Murata A, Miller LA, Greeley D (2012) Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochem Cy 26:GB3001. doi:10.1029/2011GB004157

  • Gao K-S, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Carollina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    Article  Google Scholar 

  • Gao K-S, Xu J-T, Gao G, Li Y-H, Hutchins DA, Huang B-Q, Wang L, Zheng Y, Jin P, Cai X-N, Häder D-P, Li W, Xu K, Liu N-N, Riebesell U (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Climate Chang 2:519–523. doi:10.1038/nclimate1507

    Google Scholar 

  • Gruber N, Keeling CD, Bates NR (2002) Interannual variability in the North Atlantic Ocean carbon sink. Science 298:2374–2378

    Article  Google Scholar 

  • Guilyardi E, Madec G, Terray L (2001) The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM. Clim Dyn 17:589–599. doi:10.1007/PL00007930

    Article  Google Scholar 

  • Hauck J, Völker C (2015) Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor. Geophys Res Lett 42:1459–1464. doi:10.1002/2015GL063070

    Article  Google Scholar 

  • Jones DC, Ito T, Takano Y, Hsu W-C (2014) Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Global Biogeochem Cy 28:1163–1178. doi:10.1002/2014GB004813

    Article  Google Scholar 

  • Keeling CD, Brix H, Gruber N (2004) Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii. Global Biogeochem Cy 18:GB4006. doi:10.1029/2004GB002227

  • Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem Cy 18:GB4031. doi:10.1029/2004GB002247

  • Lauvset SK, Gruber N (2014) Long-term trends in surface ocean pH in the North Atlantic. Mar Chem 162:71–76

    Article  Google Scholar 

  • Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park GH, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605. doi:10.1029/2006GL027207

    Article  Google Scholar 

  • Lenton A, Metzl N, Takahashi T, Kuchinke M, Matear RJ, Roy T, Sutherland SC, Sweeney C, Tilbrook B (2012) The observed evolution of oceanic pCO2 and its drivers over the last two decades. Global Biogeochem Cy 26:GB2021. doi:10.1029/2011GB004095

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

  • Li C-X, Gong P, Xu M, Qi Y (2001) The effects of buffer and temperature feedback on the oceanic uptake of CO2. Geophys Res Lett 28:751–754

    Article  Google Scholar 

  • Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94

    Article  Google Scholar 

  • Murata A, Hayashi K, Kumamoto Y, Sasaki K (2015) Detecting the progression of ocean acidification from the saturation state of CaCO3 in the subtropical South Pacific. Global Biogeochem Cy 29:463–475. doi:10.1002/2014GB004908

    Article  Google Scholar 

  • Pelletier GJ, Lewis E, Wallace DWR (2011) CO2SYS.XLS: a calculator for the CO2 system in seawater for Microsoft Excel/VBA. Version 16, Washington State Department of Ecology, Olympia, Washington

  • Pérez FF, Mercier H, Vázquez-Rodríguez M, Lherminier P, Velo A, Pardo PC, Rosón G, Ríos AF (2013) Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat Geosci 6:146–152

    Article  Google Scholar 

  • Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Climate Chang 5:475–480

    Article  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogechemistry dynamic. Princeton University Press, Princeton, p 493

    Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res 97:3621–3645

    Article  Google Scholar 

  • Sundquist ET, Plummer LN (1981) Carbon dioxide in the ocean surface layer: some modelling considerations. In: Bolin B (ed) Carbon cycle modelling. SCOPE Series, vol 16. Wiley, New York, pp 259–269

  • Sundquist ET, Plummer LN, Wigley TML (1979) Carbon dioxide in the ocean surface: the homogenous buffer factor. Science 204:1203–1205

    Article  Google Scholar 

  • Takahashi T, Kaiteris P, Broecker WS, Bainbridge AE (1976) An evaluation of the apparent dissociation constants of carbonic acid in seawater. Earth Planet Sci Lett 32:458–467

    Article  Google Scholar 

  • Takahashi T, Broecker WS, Werner SR (1980) Carbonate chemistry of surface waters of the world oceans. In: Goldberg ED, Horibe Y, Katsuko S (eds) Isotope marine chemistry. Uchida Rokahuho, Tokyo, pp 291–326

    Google Scholar 

  • Takahashi T, Sutherland SC, Feely RA, Cosca CE (2003) Decadal variation of the surface water pCO2 in the western and central Equatorial Pacific. Science 302:852–856

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res II 56:554–577

    Article  Google Scholar 

  • Thomas H, Prowse AEF, van Heuven S, Bozec Y, de Baar HJW, Schiettecatte LS, Suykens K, Kone M, Borges AV, Lima ID, Doney SC (2007) Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean. Global Biogeochem Cy 21:GB4001. doi:10.1029/2006GB002825

  • Thomas H, England MH, Ittekkot V (2001) An off-line 3-D model of anthropogenic CO2 uptake by the oceans. Geophys Res Lett 28:547–550

    Article  Google Scholar 

  • Tolman CF (1899) The carbon dioxide of the ocean and its relations to the carbon dioxide of the atmosphere. J Geol 7:585–618

    Article  Google Scholar 

  • Wallace DWR (2001) Introduction to special section: ocean measurements and models of carbon sources and sinks. Global Biogeochem Cy 15:3–10

    Article  Google Scholar 

  • Wang Z-HA, Wanninkhof R, Cai W-J, Byrne RH, Hu X-P, Peng T-H, Huang W-J (2013) The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: insights from a transregional coastal carbon study. Limnol Oceanogr 58:325–342

    Article  Google Scholar 

  • Weiss RF, Price RA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359

    Article  Google Scholar 

  • Winn CD, Li Y-H, Mackenzie FT, Karl DM (1998) Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site. Mar Chem 60:33–47

    Article  Google Scholar 

  • WMO/GAW (2013) The state of greenhouse gases in the atmosphere based on global observations through 2012. WMO Greenh Gas Bull 9:1–4

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, vol 65. Elsevier Science B.V., Amsterdam, The Netherlands, pp 76–84

Download references

Acknowledgments

We thank Dr. Zong-Pei Jiang from Zhejiang University for his assistance on compiling the TAlk reconstruction equations. The research was jointly supported by Chinese Oceanic Public Science and Technology Research Funds Projects under contract No. 201505003, the National Natural Science Foundation of China through grants 41276061 and 40876040, and the Visiting Fellowship in the State Key Laboratory of Marine Environmental Science (Xiamen University). Valuable comments and constructive suggestions from Ralph Keeling on an early version have greatly improved the quality of this paper. Two anonymous reviewers are thanked for their thoughtful comments and suggestions. We appreciate Dr. Christine Watts for her assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Zhai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Wd., de Zhao, H. Quantifying air–sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise. J Oceanogr 72, 651–659 (2016). https://doi.org/10.1007/s10872-016-0350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-016-0350-8

Keywords

Navigation