Skip to main content

Advertisement

Log in

Fine-scale structure and mixing across the front between the Tsugaru Warm and Oyashio Currents in summer along the Sanriku Coast, east of Japan

  • Special Section: Original Article
  • Oceanographic observations after the 2011 earthquake off the Pacific coast of Tohoku
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

High-resolution shipboard observations were made across the front between the Tsugaru Warm Current (TWC) and the Oyashio Current in July 2013. Fine structure in the frontal zones was successfully captured with an underway conductivity–temperature–depth profiler deployed with a typical horizontal interval of 2–3 nautical miles. The front characterized by marked horizontal gradients in temperature and salinity extended from the subsurface onto the shelf. Along this frontal layer, the minimum frequency for internal waves became substantially lower than the local inertial frequency, mainly due to the strong vertical shear of the geostrophic velocity. Turbulent energy dissipation rates ε (vertical diffusivity K ρ ) were frequently elevated along the front and its offshore side up to 3 × 10−8 W kg−1 (10−4 m2 s−1), which may have been caused by an “internal tide chimney”, trapping low-frequency internal waves within the band of strong shear. At the onshore side of the TWC on the shelf, strong mixing with ε (K ρ ) exceeding 10−6 W kg−1 (10−3 m2 s−1) was also observed. A large portion of the water columns in the frontal area provided suitable conditions for double diffusion; in some layers with moderate turbulence, temperature microstructures indicative of double diffusion were observed. The vigorous mixing processes around the front are likely to modify the properties of the TWC downstream, which could then produce a latitudinal gradient in environments along the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Conlon DM (1982) On the outflow modes of the Tsugaru Warm Current. La mer 20:60–64

    Google Scholar 

  • D’Asaro E, Lee C, Rainville L, Harcourt R, Thomas L (2011) Enhanced turbulence and energy dissipation at ocean fronts. Science 332(6027):318–322

    Article  Google Scholar 

  • Hanawa K, Mitsudera H (1987) Variation of water system distribution in the Sanriku coastal area. J Oceanogr Soc Jpn 42:435–446

    Article  Google Scholar 

  • Inoue R, Gregg MC, Harcourt RR (2010) Mixing rates across the Gulf Stream, part 1: on the formation of Eighteen Degree Water. J Mar Res 68(5):643–671

    Article  Google Scholar 

  • Inoue R, Yamazaki H, Wolk F, Kono T, Yoshida J (2007) An estimation of buoyancy flux for a mixture of turbulence and double diffusion. J Phys Oceanogr 37(3):611–624. doi:10.1175/jpo2996.1

    Article  Google Scholar 

  • Ishizu M, Itoh S, Tanaka K, Komatsu K (2015) Influences of the Tsushima and Oyashio Currents on the circulation and water properties of Otsuchi Bay. J Oceanogr (submitted)

  • Ishizu M, Kitade Y, Matsuyama M (2008) Characteristics of the cold-water belt formed off Soya Warm Current, J Geophys Res 113(C12). doi:10.1029/2008jc004786

  • Itoh S, Sugimoto T (2002) Direct current measurements off Sanriku, east of Japan. J Oceanogr 58(6):877–882. doi:10.1023/A:1022883415672

    Article  Google Scholar 

  • Itoh S, Yasuda I, Nakatsuka T, Nishioka J, Volkov YN (2010) Fine- and microstructure observations in the Urup Strait, Kuril Islands, during August 2006. J Geophys Res 115. doi:10.1029/2009JC005629

  • Itoh S, Tanaka Y, Osafune S, Yasuda I, Yagi M, Kaneko H, Konda S, Nishioka J, Volkov YN (2014) Direct breaking of large-amplitude internal waves in the Urup Strait. Prog Oceanogr 126:109–120. doi:10.1016/J.Pocean.2014.04.014

    Article  Google Scholar 

  • Johnston TMS, Rudnick DL, Pallas-Sanz E (2011) Elevated mixing at a front. J Geophys Res 116(C11). doi:10.1029/2011jc007192

  • Joyce TM (1989) On in situ “calibration” of shipboard ADCPs. J Atmos Ocean Technol 6(1):169–172. doi:10.1175/1520-0426(1989)006<0169:oisosa>2.0.co;2

    Article  Google Scholar 

  • Kaneko H, Yasuda I, Komatsu K, Itoh S (2012) Observations of the structure of turbulent mixing across the Kuroshio. Geophys Res Lett 39(15). doi:10.1029/2012gl052419

  • Kaneko H, Yasuda I, Komatsu K, Itoh S (2013) Observations of vertical turbulent nitrate flux across the Kuroshio. Geophys Res Lett 40(12):3123–3127. doi:10.1002/Grl.50613

    Article  Google Scholar 

  • Klymak JM, Legg SM, Pinkel R (2010) High-mode stationary waves in stratified flow over large obstacles. J Fluid Mech 644:321. doi:10.1017/s0022112009992503

    Article  Google Scholar 

  • Koslow JA, Pesant S, Feng M, Pearce A, Fearns P, Moore T, Matear R, Waite A (2008) The effect of the Leeuwin Current on phytoplankton biomass and production off Southwestern Australia. J Geophys Res 113(C7). doi:10.1029/2007jc004102

  • Kunze E (1985) Near-inertial wave-propagation in geostrophic shear. J Phys Oceanogr 15(5):544–565

    Article  Google Scholar 

  • Lee DK, Niiler PP (1998) The inertial chimney: the near-inertial energy drainage from the ocean surface to the deep layer. J Geophys Res 103(C4):7579–7591. doi:10.1029/97jc03200

    Article  Google Scholar 

  • Masunaga E, Fringer O, Yamazaki H (2015) An observational and numerical study of river plume dynamics in Otsuchi Bay, Japan. J Oceanogr. doi:10.1007/s10872-015-0324-2

    Google Scholar 

  • Nagai T, Tandon A, Yamazaki H, Doubell MJ (2009) Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys Res Lett 36. doi:10.1029/2009GL038832

  • Nagai T, Tandon A, Yamazaki H, Doubell MJ, Gallager S (2012) Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front. J Geophys Res 117(C8):C08013. doi:10.1029/2011jc007228

    Google Scholar 

  • Osborn TR (1980) Estimates of the local-rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10(1):83–89

    Article  Google Scholar 

  • Rainville L, Pinkel R (2004) Observations of energetic high-wavenumber internal waves in the Kuroshio. J Phys Oceanogr 34(7):1495–1505

    Article  Google Scholar 

  • Ruddick B (1983) A practical indicator of the stability of the water column to double-diffusive activity. Deep Sea Res Part A Oceanogr Res Pap 30(10):1105–1107. doi:10.1016/0198-0149(83)90063-8

    Article  Google Scholar 

  • Rudnick DL, Klinke J (2007) The underway conductivity–temperature–depth instrument. J Atmos Ocean Technol 24(11):1910–1923. doi:10.1175/jtech2100.1

    Article  Google Scholar 

  • Sakamoto T, Urakawa LS, Hasumi H, Ishizu M, Itoh S, Tanaka K (2015) Numerical simulation of Pacific water intrusions into Otsuchi Bay, northeast of Japan, with a nested-grid OGCM. J Oceanogr (submitted)

  • Shimizu Y, Yasuda I, Ito S (2001) Distribution and circulation of the coastal Oyashio intrusion. J Phys Oceanogr 31(6):1561–1578

    Article  Google Scholar 

  • Skagseth Ø, Drinkwater KF, Terrile E (2011) Wind- and buoyancy-induced transport of the Norwegian Coastal Current in the Barents Sea. J Geophys Res 116(C8). doi:10.1029/2011jc006996

  • Stabeno PJ, Ladd C, Reed RK (2009) Observations of the Aleutian North Slope Current, Bering Sea, 1996–2001. J Geophys Res 114(C5). doi:10.1029/2007jc004705

  • Takikawa T, Yoon JH, Cho KD (2005) The Tsushima warm current through Tsushima Straits estimated from ferryboat ADCP data. J Phys Oceanogr 35(6):1154–1168. doi:10.1175/jpo2742.1

    Article  Google Scholar 

  • Wagawa T, Kuroda H, Ito S-I, Kakehi S, Yamanome T, Tanaka K, Endoh Y, Kaga S (2015) Variability in water properties and predictability of sea surface temperature along Sanriku coast, Japan. Cont Shelf Res 103:12–22. doi:10.1016/j.csr.2015.04.016

    Article  Google Scholar 

  • Whitt DB, Thomas LN (2013) Near-inertial waves in strongly baroclinic currents. J Phys Oceanogr 43(4):706–725. doi:10.1175/jpo-d-12-0132.1

    Article  Google Scholar 

  • Yasuda I (2003) Hydrographic structure and variability in the Kuroshio–Oyashio Transition Area. J Oceanogr 59(4):389–402

    Article  Google Scholar 

  • Yasuda I, Okuda K, Hirai M, Ogawa Y, Kudoh H, Fukushima S, Mizuno K (1988) Short-term variations of the Tsugaru Warm Current in autumn (in Japanese with English abstract). Bull Tohoku Reg Fish Res Inst 50:153–191

    Google Scholar 

  • Zhai X, Johnson HL, Marshall DP (2010) Significant sink of ocean-eddy energy near western boundaries. Nat Geosci 3(9):608–612. doi:10.1038/ngeo943

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Tohoku Ecosystem-Associated Marine Sciences (TEAMS) by the Ministry of Education, Culture, Sports, Science and Technology in Japan. S. Itoh, H. Kaneko and T. Okuhishi were also supported by The New Ocean Paradigm on its Biogeochemistry, Ecosystem, and Sustainable Use (NEOPS). The authors thank S. Kouketsu, H. Kawahara and I. Yasuda for preparation and deployments of the UCTD profiler. The data obtained by R/V Daisan Kaiyo Maru are available on the Research Information and Data Access Site of TEAMS (RIAS). The data from the Iwate Fisheries Technology Center are available on its website (http://www2.pref.iwate.jp/~hp5507/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachihiko Itoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, S., Kaneko, H., Ishizu, M. et al. Fine-scale structure and mixing across the front between the Tsugaru Warm and Oyashio Currents in summer along the Sanriku Coast, east of Japan. J Oceanogr 72, 23–37 (2016). https://doi.org/10.1007/s10872-015-0320-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-015-0320-6

Keywords

Navigation