Skip to main content

Advertisement

Log in

Periodic Forcing and ENSO Suppression in the Cane-Zebiak Model

Journal of Oceanography Aims and scope Submit manuscript

Abstract

The effect of a periodic forcing on the intensity of El Nino-Southern Oscillation (ENSO) is studied using the Cane-Zebiak model. With a basic seasonal climate close to the present, ENSO can be suppressed by a substantially enhanced seasonal external equatorial wind, which could be induced by monsoon forcing. ENSO suppression is usually more effective for an unstable self-exciting ENSO than for a stable stochastic-exciting ENSO. In addition, ENSO also tends to be suppressed by sufficiently strong periodic forcings of longer periods. The suppression of ENSO seems to be related to the nonlinear mechanism of frequency entrainment. These conclusions are in qualitative agreement with previous studies of conceptual ENSO models, although the Cane-Zebiak model shows a much more complicated dependence of the amplitude of ENSO on periodic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnett, T. P. et al. (1989): The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 48, 661–685.

    Google Scholar 

  • Battisti, D. S. and A. C. Hirst (1989): Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1708.

    Google Scholar 

  • Battisti, D. S. and E. S. Sarachik (1995): Understanding and predicting ENSO. J. Geophys. Res., 33,Suppl., 1367–1376.

    Google Scholar 

  • Bjerkness, J. (1969): Atmospheric teleconnection from equatorial Pacific. Mon. Wea. Rev., 97, 163.

    Google Scholar 

  • Chang, C.-P. and T. Li (2000): A theory for the tropospheric biennial oscillation. J. Atmos. Sci., 57, 2209–2224.

    Google Scholar 

  • Chang, P., B. Wang, T. Li and L. Ji (1994): Interactions between the seasonal cycle and the southern oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys. Res. Lett., 21, 2817–2820.

    Google Scholar 

  • Chung, C. and S. Nigam (1999): Asian summer monsoon-ENSO feedback on the Cane-Zebiak model. J. Climate, 12, 2782–2807.

    Google Scholar 

  • Clement, A. C., R. Seager and M. A. Cane (1999): Oribital controls on ENSO and tropical climate. Paleoceanography, 14, 441–456.

    Google Scholar 

  • Clement, A. C., R. Seager and M. A. Cane (2000): Suppression of El Nino during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography, 15, 731–737.

    Google Scholar 

  • Fedorov, A. and G. Philander (2000): Is El Nino changing? Science, 288, 1997–2002.

    PubMed  Google Scholar 

  • Jin, F. F. (1997): An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–847.

    Google Scholar 

  • Lau, K. M. (1981): Oscillations in a simple equatorial climate system. J. Atmos. Sci., 38, 248–261.

    Google Scholar 

  • Liu, Z. (2002): A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 1088–1098.

    Google Scholar 

  • Liu, Z., R. Jacobs, J. Kutzbach, S. Harrison and J. Anderson (1999): Monsoon impact on El Nino variability in the early Holocene. PAGE Newsletter, 7, No.2, 16–17.

    Google Scholar 

  • Liu, Z., J. Kutzbach and L. Wu (2000): Modeling climatic shift of El Nino variability in the Holoence. Geophys. Res. Lett., 27(15), 2265–2268.

    Google Scholar 

  • McCreary, J. P. and D. Anderson (1991): An overview of coupled ocean-atmosphere models of El Nino and the Southern Oscillation. J. Geophys. Res., 96,Suppl., 3125–3150.

    Google Scholar 

  • Neelin, J. D. (1991): The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and experiments in a hybridcoupled model. J. Atmos. Sci., 48, 584–606.

    Google Scholar 

  • Penland, C. and P. Sardeshmukh (1995): The optimal growth of the tropical sea surface temperature anomalies. J. Climate, 8, 1999–2024.

    Google Scholar 

  • Philander, S. G. H., T. Yamagata and R. C. Pacanowski (1984): Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604–613.

    Google Scholar 

  • Rodbell, D. T. et al. (1999): An ∼15,000-year record of El Nino-Driven Alluviation in southwestern Ecuador. Science, 283, 516–520.

    PubMed  Google Scholar 

  • Sandweiss, D. et al. (1996): Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Nino. Science, 273, 1531–1533.

    Google Scholar 

  • Schopf, P. S. and M. J. Suarez (1990): Ocean wave dynamics and the timescale of ENSO. J. Phys. Ocean, 20, 629–645. 22.

    Google Scholar 

  • Suarez, M. J. and P. S. Schopf (1988): A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 549–566.

    Google Scholar 

  • Tziperman, E., S. Zebiak and M. Cane (1997): Mechanisms of seasonal-ENSO interaction. J. Atmos. Sci., 54, 61–71.

    Google Scholar 

  • Wang, C. (2000): On the atmospheric responses to tropical Pacific heating during the mature phase of El Nino. J. Atmos. Sci., 57, 3767–3781.

    Google Scholar 

  • Wang, C. and R. H. Weisberg (1998): Climate variability of the coupled tropical-extratropical ocean-atmosphere system. Geophys. Res. Lett., 25, 3979–3982.

    Google Scholar 

  • Wyrtki, K. (1975): El Nino—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.

    Google Scholar 

  • Zebiak, S. E. and M. A. Cane (1987): A model El Nino-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, A., Liu, Q. & Liu, Z. Periodic Forcing and ENSO Suppression in the Cane-Zebiak Model. J Oceanogr 61, 109–113 (2005). https://doi.org/10.1007/s10872-005-0023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-005-0023-5

Keywords

Navigation