Skip to main content
Log in

Hybrid Material Based on the Lindquist Polyoxometalate [W6O19]2− and the organosulfur donor o-Me2TTF: A Combined Structural and Spectroscopic Study

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis, crystal structure and spectroscopic properties of the hybrid radical cation salt containing oxidized o-3,4-dimethyltetrathiafulvalene (o-Me2TTF) and the Lindquist polyoxometalate anion [W6O19]2− are reported. The title salt represents the first time a Lindquist polyoxometalate has been utilized as the counter anion with this unsymmetrical member of the TTF family of derivatives. The salt crystallizes in the triclinic space group \( P\bar{1} \)with a = 7.6211(7) Å, b = 9.5231(9) Å, c = 12.2148(11) Å, α = 105.5870(10)°, β = 106.8340(10)° and γ = 95.6950(10)°. Resolution of the solid state structure revealed that the o-Me2TTF radical cations aggregate as isolated face-to-face dimers with intradimer interactions between neighboring sulfur atoms at distances <3.6 Å. Hydrogen bonding was also observed between hydrogen atoms bound to sp 2-hybridized carbon atoms of o-Me2TTF and bridging oxygen atoms of [W6O19]2−. Single crystal IR and Raman spectra were also collected and provide further evidence that the o-Me2TTF donors have been oxidized to their corresponding radical cationic states.

Graphical Abstract

Herein we present the structure and single crystal spectroscopic properties of the hybrid salt (o-Me2TTF)2[W6O19], which combines the unsymmetrical TTF derivative o-Me2TTF with the closed shell Lindquist polyoxometalate [W6O19]2−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coronado E, Day P (2004) Chem Rev 104:5419

    Article  CAS  Google Scholar 

  2. Ferraris J, Cowan DO, Walatka VJ, Perlstein JH (1973) J Am Chem Soc 95:948

    Article  CAS  Google Scholar 

  3. Bechgaard K, Jacobsen CS, Mortensen K, Pedersen HJ, Thorup N (1980) Solid State Commun 33:1119

    Article  CAS  Google Scholar 

  4. Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang HH, Kini AM, Whangbo M-H (1992) Organic superconductors. Prentice Hall, Englewood Cliffs

    Google Scholar 

  5. Kurmoo M, Graham AW, Day P, Coles SJ, Hursthouse MB, Caulfield JL, Singleton J, Pratt FL, Hayes W, Ducasse L, Guinneau P (1995) J Am Chem Soc 117:12209

    Article  CAS  Google Scholar 

  6. Coronado E, Galán-Mascarós JR, Gómez-Garcia CJ, Laukhin V (2000) Nature 408:447

    Article  CAS  Google Scholar 

  7. Coronado E, Gómez-García CJ (1998) Chem Rev 98:273

    Article  CAS  Google Scholar 

  8. Triki S, Ouahab L, Padiou J, Grandjean D (1989) J Chem Soc Chem Commun 1068

  9. Bellitto C, Attanasio D, Bonamico M, Fares V, Imperatori P, Patrizio S (1990) Mater Res Soc Symp Proc 173:143

    Article  CAS  Google Scholar 

  10. Triki S, Ouahab L, Grandjean D (1991) Acta Crystallogr C47:645

    CAS  Google Scholar 

  11. Coronado E, Galán-Mascaros JR, Giménez-Saiz C, Gómez-García CJ, Rovira C, Tarrés J, Triki S, Veciana J (1998) J Mater Chem 8:313

    Article  CAS  Google Scholar 

  12. Triki S, Ouahab L, Grandjean D, Amiel J, Garrigou-Lagrange C, Delhaes P, Fabre JM (1991) Synth Met 42:2589

    Article  CAS  Google Scholar 

  13. Triki S, Ouahab L (1993) Acta Crystallogr C49:132–135

    Google Scholar 

  14. Reinheimer EW, Fourmigué M, Dunbar KR (2009) J Chem Crystallogr 39:723

    Article  CAS  Google Scholar 

  15. Triki S, Ouahab L, Halet JF, Peña O, Padiou J, Grandjean D, Garrigou-Lagrange C, Delhaes P (1992) J Chem Soc Dalton Trans 1217

  16. Triki S, Ouahab L, Grandjean D (1991) Acta Crystallogr C49:132

    Google Scholar 

  17. Triki S, Ouahab L, Grandjean D, Canet R, Garrigou-Lagrange C, Delhaes P (1993) Synth Met 55–57:2028

    Article  Google Scholar 

  18. Coronado E, Gálan-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Martínez-Ferrero E, Almeida M, Lopes EB (2004) Adv Mater 16:324

  19. Coronado E, Gálan-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Laukhin VN (1996) Adv Mater 8:801

    Article  CAS  Google Scholar 

  20. Coronado E, Gálan-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Triki S (1998) J Am Chem Soc 120:4671

    Article  CAS  Google Scholar 

  21. Gálan-Mascarós JR, Giménez-Saiz C, Triki S, Gómez-García CJ, Coronado E, Ouahab L (1995) Angew Chem Int Ed Engl 34:1460

    Article  Google Scholar 

  22. Fourmigué M, Uzelmeier CE, Boubekeur K, Bartley SL, Dunbar KR (1997) J Organomet Chem 529:343

    Article  Google Scholar 

  23. Smucker BW, Dunbar KR (2000) Dalton Trans 1309

  24. Uzelmeier CE, Smucker BW, Reinheimer EW, Shatruk M, O’Neal A, Fourmigué M, Dunbar KR (2006) Dalton Trans 5259

  25. Avarvari N, Fourmigué M (2004) Chem Commun 1300

  26. Avarvari N, Martin D, Fourmigué M (2002) J Organomet Chem 643–644:292

    Article  Google Scholar 

  27. Gouverd C, Biaso F, Cataldo L, Berclaz T, Geoffroy M, Levillain E, Avarvari N, Fourmigué M, Sauvage FX, Wartelle C (2005) Phys Chem Chem Phys 7:85

    Article  CAS  Google Scholar 

  28. Kobayashi A, Fujiwara E, Kobayashi H (2004) Chem Rev 104:5243

    Article  CAS  Google Scholar 

  29. Mhanni A, Ouahab L, Grandjean D, Amoroux J, Fabre JM (1993) Acta Crystallogr C49:1187

    CAS  Google Scholar 

  30. Uzelmeier CE, Fourmigué M, Dunbar KR (1998) Acta Crystallogr C54:1047

    CAS  Google Scholar 

  31. Fourmigué M, Reinheimer EW, Dunbar KR, Auban-Senzier P, Pasquier C, Coulon C (2008) Dalton Trans 4652

  32. Reinheimer EW, Fourmigué M, Dunbar KR (2009) J Chem Crystallogr 39:735

    Article  CAS  Google Scholar 

  33. Reinheimer EW, Zhao H, Dunbar KR (2008) Synth Met 158:447

    Article  CAS  Google Scholar 

  34. Reinheimer EW, Galán-Mascarós JR, Gómez-García CJ, Zhao H, Fourmigué M, Dunbar KR (2008) J Mol Struc 890:81

    Article  CAS  Google Scholar 

  35. Reinheimer EW, Zhao H, Dunbar KR (2010) J Chem Crystallogr 40:514

    Article  CAS  Google Scholar 

  36. Batail P, Boubekeur K, Fourmigué M, Gabriel JCP (1998) Chem Mater 10:3005

    Article  CAS  Google Scholar 

  37. Che M, Fournier M, Launay JP (1979) J Chem Phys 71:1954

    Article  CAS  Google Scholar 

  38. Gerson F, Lamprecht A, Fourmigué M (1996) J Chem Soc Perkin Trans 2:1409

    Google Scholar 

  39. SMART (1998) Software for the CCD detector system, version 5.050 (NT). Bruker Analytical X-ray Systems, Madison

  40. SAINT (1998) Software for the CCD detector system, version 5.01 (NT). Bruker Analytical X-ray Systems, Madison

  41. Blessing RH (1995) SADABS, program for absorption corrections using Siemens CCD based on the method of Robert Blessing. Acta Crystallogr A 51:33

    Article  Google Scholar 

  42. Sheldrick GM (1996) XPREP, program for space group determination. University of Göttingen, Göttingen

    Google Scholar 

  43. Speck AL (2001) PLATON, a multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  44. Sheldrick GM (1997) SHELXS-97, program for crystal structure determination. University of Göttingen, Göttingen

    Google Scholar 

  45. Sheldrick GM (1997) SHELXL-97, program for the crystal structure refinement. University of Göttingen, Göttingen

    Google Scholar 

  46. Barbour LJ (2001) J Supramol Chem 1:189

    Article  CAS  Google Scholar 

  47. Umland TC, Allie S, Kuhlmann T, Coppens P (1987) J Phys Chem 92:6456

    Article  Google Scholar 

  48. Ellern A, Bernstein J, Becker JY, Zamir S, Shalal L, Cohen S (1994) Chem Mater 6:1378

    Article  CAS  Google Scholar 

  49. Cooper WF, Edmonds JW, Wudl F, Coppens P (1974) Cryst Struct Commun 3:23

    CAS  Google Scholar 

  50. Alberola A, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ (2003) J Am Chem Soc 125:10774

    Article  CAS  Google Scholar 

  51. Coronado E, Galán-Mascarós JR, Gómez-García CJ, Murcia-Martínez A, Canadell E (2004) Inorg Chem 43:8072

    Article  CAS  Google Scholar 

  52. Coronado E, Galán-Mascarós JR, Gómez-García CJ, Martínez-Ferrero E, van Smaalen S (2004) Inorg Chem 43:4808

    Article  CAS  Google Scholar 

  53. Clemente-León M, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Ribera E, Vidal-Gancedo J, Rovira C, Canadell E, Laukhin V (2001) Inorg Chem 40:3526

    Article  Google Scholar 

  54. Clemente-León M, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Rovira C, Laukhin VN (1999) Synth Met 103:2339

    Article  Google Scholar 

  55. Clemente-León M, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García J, Fabre JM (1999) Synth Met 103:2279

    Article  Google Scholar 

  56. Kobayashi H, Tomita H, Naito T, Kobayashi A, Sakai Watanabe T, Cassoux P (1996) J Am Chem Soc 118:368

    Google Scholar 

  57. Bousseau M, Valade L, Legros JP, Cassoux P, Garbauskas M, Interrante LV (1986) J Am Chem Soc 108:1908

    Article  CAS  Google Scholar 

  58. Perruchas S, Boubekeur K, Auban-Senzier P (2004) J Mater Chem 14:3509

    Article  CAS  Google Scholar 

  59. Kazheva ON, Alexandrov GG, Dyachenko OA, Zinenko TN, Kravchenko AV, Starodub VA, Khotkevich AV (2006) Synth Met 156:251

    Article  CAS  Google Scholar 

  60. Chi X, Scott B, Lawes G, Ramirez AP (2004) J Chem Crystallogr 34:249

    Article  CAS  Google Scholar 

  61. Fourmigué M, Batail P (2004) Chem Rev 104:5379

    Article  Google Scholar 

  62. Dolbecq A, Guirauden A, Fourmigué M, Boubekeur K, Batail P, Rohmer MM, Bénard M, Sallé M, Blanchard P (1999) J Chem Soc Dalton Trans 1241

  63. Jankowski D, Świetlik R, Reinheimer EW, Fourmigué M (2011) J Raman Spectr 42:1518

    Article  CAS  Google Scholar 

  64. Bridgeman AJ, Cavigliasso G (2002) Chem Phys 279:143

    Article  CAS  Google Scholar 

  65. Meneghetti M, Bozio R, Zanon I, Pecile C, Ricotta C, Zanetti M (1984) J Chem Phys 80:6210

    Article  CAS  Google Scholar 

  66. Yamamoto T, Uruichi M, Yamamoto K, Yakushi K, Kawamoto A, Taniguchi H (2005) J Phys Chem B 109:15226

    Article  CAS  Google Scholar 

  67. Drozdowa O, Yamochi H, Yakushi K, Uruichi M, Horiuichi S, Saito G (2000) J Am Chem Soc 122:4436

    Article  Google Scholar 

  68. Visentini G, Masino M, Bellitto C, Girlando A (1998) Phys Rev B 58:9460

    Article  CAS  Google Scholar 

  69. Rice MJ, Lipari NO, Strässler S (1977) Phys Rev Lett 39:1359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish–French Polonium 2009–2010 Program No. 20083YF, the CNRS-PAN program, and by the French Agence Nationale de la Recherche (Contract No. BLAN08-3 317277) for financial support. MF also thanks the ANR for additional financial support (Contract No. 08-BLAN-0140 3/4-Filled). EWR thanks the French Government for financial support in the form of a Chateaubriand Fellowship (Dossier #634148J). We also thank Thierry Roisnel (CDIFX Rennes) for the X-ray data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Reinheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinheimer, E.W., Jankowski, D., Świetlik, R. et al. Hybrid Material Based on the Lindquist Polyoxometalate [W6O19]2− and the organosulfur donor o-Me2TTF: A Combined Structural and Spectroscopic Study. J Chem Crystallogr 43, 178–186 (2013). https://doi.org/10.1007/s10870-013-0403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0403-4

Keywords

Navigation