Skip to main content
Log in

Crystal Structures of Dipeptides Derived from the β-Amino Acids (1R,2S)-2-Aminocyclopentanecarboxylic Acid and (1S,2R,3S)-2-Amino-3-methylcyclopentanecarboxylic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Crystals of the dimeric β-peptides 13 and 20, derived from (1R,2S)-2-aminocyclopentanecarboxylic acid and (1S,2R,3S)-2-amino-3-methylcyclopentanecarboxylic acid, respectively, were synthesised and studied by X-ray diffraction in order to establish their solid state secondary structural characteristics. Compound 13 crystallises in the monoclinic space group P 2 1 with cell parameters of a = 5.2682(1) Å, b = 9.1211(2) Å, c = 22.4467(6) Å, β = 91.3855(9)°, V = 1078.29(4) Å3 and Z = 2. Compound 20 crystallizes in the orthorhombic space group P 2 1 2 1 2 1 with cell parameters of a = 5.0968(1) Å, b = 11.5546(2) Å, c = 43.5414(8) Å, V = 2564.22(8) Å3 and Z = 4. In both cases adjacent molecules are linked by a series of N–H···O=C hydrogen bonds to form β-sheet like structures.

Graphical Abstract

The structures of two dipeptides derived from the β-amino acids (1R,2S)-2-aminocyclopentanecarboxylic acid and (1S,2R,3S)-2-amino-3-methylcyclopentanecarboxylic acid have been analysed by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. It was found that 2,6-di-tert-butylphenol (2,6-DTBP) was not compatible with preparing large quantities (>10 g) of the prerequisite β-amino ester in the lithium amide conjugate addition step. Thus, an alternative, scalable procedure was developed using 2-pyridone to quench the lithium β-amino enolate which produced a 97:3 mixture of C(2)-epimeric β-amino esters. For other diastereoselective protonations of lithium β-amino enolates with 2-pyridone from our laboratory, see Refs. [4547].

  2. β-Amino ester (1R,2S)-11 was converted to the corresponding (R)- and (RS)-MTPA derivatives (Mosher’s amides) and was determined to be >98% ee by both 1H and 19F NMR spectroscopic analyses. See Refs. [4850].

  3. β-Amino ester (1S,2R,3S)-17 was converted to the corresponding (R)- and (RS)-MTPA derivatives (Mosher’s amides) and was determined to be >98% ee by both 1H and 19F NMR spectroscopic analyses. See Refs. [4850].

  4. The structures of 13 and ent-20 were overlaid using the Chem-3D structure mapping function.

References

  1. Seebach D, Overhand M, Kuhnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H (1996) Helv Chim Acta 79:913

    Article  CAS  Google Scholar 

  2. Hintermann T, Seebach D (1997) Chimia 50:244

    Google Scholar 

  3. Seebach D, Abele S, Schreiber JV, Martinoni B, Nussbaum AK, Schild H, Schulz H, Hennecke H, Woessner R, Bitsch F (1998) Chimia 52:734

    CAS  Google Scholar 

  4. Seebach D, Hook DF, Glätti A (2006) Biopolymers (Peptide Science) 84:23

    Google Scholar 

  5. Aguilar M-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith I, Perlmutter P (2007) Org Biomol Chem 5:2884

    Article  CAS  Google Scholar 

  6. Werder M, Hauser H, Abele S, Seebach D (1999) Helv Chim Acta 82:1774

    Article  CAS  Google Scholar 

  7. Hamuro Y, Schneider JP, DeGrado WF (1999) J Am Chem Soc 121:12200

    Article  CAS  Google Scholar 

  8. Liu D, DeGrado WF (2001) J Am Chem Soc 123:7553

    Article  CAS  Google Scholar 

  9. Hintermann T, Seebach D (1997) Synlett:437

  10. Seebach D, Abele S, Gademann K, Guichard G, Hintermann T, Jaun B, Matthews JL, Schreiber JV (1998) Helv Chim Acta 81:932

    Article  CAS  Google Scholar 

  11. Gung BW, Zou D (1999) J Org Chem 64:2176

    Article  CAS  Google Scholar 

  12. Raguse L, Lai JR, Gellman SH (2002) Helv Chim Acta 85:4154

    Article  CAS  Google Scholar 

  13. Glättli A, Seebach D, van Gunsteren WF (2004) Helv Chim Acta 87:24872

    Article  Google Scholar 

  14. Luppi G, Galeazzi R, Garavelli M, Formaggio F, Tomasini C (2004) Org Biomol Chem 2:2187

    Article  Google Scholar 

  15. Izquierdo S, Kogan MJ, Parella T, Moglioni AG, Branchadell V, Giralt E, Ortuño RM (2004) J Org Chem 69:5093

    Article  CAS  Google Scholar 

  16. Appella DH, Christianson LA, Karle IL, Powell DR, Gellman SH (1996) J Am Chem Soc 118:13071

    Article  CAS  Google Scholar 

  17. Barchi JJ Jr, Huang X, Appella DH, Christianson LA, Durell SR, Gellman SH (2000) J Am Chem Soc 122:2711

    Article  CAS  Google Scholar 

  18. Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ Jr, Gellman SH (1997) Nature 387:381

    Article  CAS  Google Scholar 

  19. Applequist J, Bode KA, Appella DH, Christianson LA, Gellman SH (1998) J Am Chem Soc 120:4891

    Article  CAS  Google Scholar 

  20. Wang X, Espinosa JF, Gellman SH (2000) J Am Chem Soc 122:4821

    Article  CAS  Google Scholar 

  21. Lee H-S, Syud FA, Wang X, Gellman SH (2001) J Am Chem Soc 123:7721

    Article  CAS  Google Scholar 

  22. Winkler JD, Piatnitski EL, Mehlmann J, Kasparec J, Axelsen PH (2001) Angew Chem Int Ed 40:743

    Article  CAS  Google Scholar 

  23. Woll MG, Fisk JD, LePlae PR, Gellman SH (2002) J Am Chem Soc 124:12447

    Article  CAS  Google Scholar 

  24. Raguse L, Lai JR, Gellman SH (2003) J Am Chem Soc 125:5592

    Article  CAS  Google Scholar 

  25. Park J-S, Lee H-S, Lai JR, Kim BM, Gellman SH (2003) J Am Chem Soc 125:8539

    Article  CAS  Google Scholar 

  26. Peelen TJ, Chi Y, English EP, Gellman SH (2004) Org Lett 6:4411

    Article  CAS  Google Scholar 

  27. Simpson GL, Gordon AH, Lindsay DM, Promsawan N, Crump MP, Mulholland K, Hayter BR, Gallagher T (2006) J Am Chem Soc 128:10638

    Article  CAS  Google Scholar 

  28. Martinek TA, Mándity IM, Fülöp L, Tóth GK, Vaas E, Hollósi M, Forró E, Fülöp F (2006) J Am Chem Soc 128:13539

    Article  CAS  Google Scholar 

  29. Abraham E, Bailey CW, Claridge TDW, Davies SG, Ling KB, Odell B, Rees TL, Roberts PM, Russell AJ, Smith AD, Smith LJ, Storr HR, Sweet MJ, Thompson AL, Thomson JE, Tranter GE, Watkin DJ (2010) Tetrahedron: Asymmetry 21:1797

    Article  CAS  Google Scholar 

  30. Abraham E, Claridge TDW, Davies SG, Odell B, Roberts PM, Russell AJ, Smith AD, Smith LJ, Storr HR, Sweet MJ, Thomson JE, Thompson AL, Tranter GE, Watkin DJ (2011) Tetrahedron: Asymmetry 22:69

    Article  CAS  Google Scholar 

  31. Martinek TA, Tóth GK, Vaas E, Hollósi M, Fülöp F (2002) Angew Chem Int Ed 41:1718

    Article  CAS  Google Scholar 

  32. Davies SG, Ichihara O, Lenoir I, Walters IAS (1994) J Chem Soc Perkin Trans 1:1411

    Article  Google Scholar 

  33. Davies SG, Russell AJ, Sheppard RL, Smith AD, Thomson JE (2007) Org Biomol Chem 5:3190

    Article  CAS  Google Scholar 

  34. Davies SG, Garner AC, Long MJC, Smith AD, Sweet MJ, Withey JM (2004) Org Biomol Chem 2:3355

    Article  CAS  Google Scholar 

  35. Cosier J, Glazer AM (1986) J Appl Crystallogr. 19:105

  36. Otwinowski Z, Minor W (1997) Methods Enzymol Academic Press, New York, pp 307–326

  37. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435

    Google Scholar 

  38. Betteridge PW, Carruthers JR, Cooper GI, Prout CK, Watkin DJ (2003) J Appl Crystallogr 36:1487

    Article  CAS  Google Scholar 

  39. Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Cryst 43:1100

    Article  CAS  Google Scholar 

  40. Flack HD (1983) Acta Cryst A 39:876

    Article  Google Scholar 

  41. Flack HD, Bernardinelli G (2000) J Appl Cryst 33:1143

    Article  CAS  Google Scholar 

  42. Thompson AL, Watkin DJ (2009) Tetrahedron: Asymmetry 20:712

    Article  CAS  Google Scholar 

  43. Thompson AL, Watkin DJ (2011) J Appl Cryst submitted manuscript

  44. Hooft RWW, Straver LH, Spek AL (2008) J Appl Cryst 41:96

    Article  CAS  Google Scholar 

  45. Beddow JE, Davies SG, Smith AD, Russell, AJ (2004) Chem Commun:2778

  46. Beddow JE, Davies SG, Ling KB, Roberts PM, Russell AJ, Smith AD, Thomson JE (2007) Org Biomol Chem 5:2812

    Article  CAS  Google Scholar 

  47. Davies SG, Foster EM, McIntosh CR, Roberts PM, Rosser TE, Smith AD, Thomson JE (2011) Tetrahedron: Asymmetry. doi:10.1016/j.tetasy.2011.06.008

  48. Dale JA, Mosher HS (1973) J Am Chem Soc 95:512

    Article  CAS  Google Scholar 

  49. Sullivan GR, Dale JA, Mosher HS (1973) J Org Chem 38:2143

    Article  CAS  Google Scholar 

  50. Ohtani I, Kusumi T, Kashman Y, Kakisawa H (1991) J Am Chem Soc 113:4092

    Article  CAS  Google Scholar 

  51. Aye Y, Davies SG, Garner AC, Roberts PM, Smith AD, Thomson JE (2008) Org Biomol Chem 6:2195

    Article  CAS  Google Scholar 

  52. Abraham E, Davies SG, Docherty AJ, Ling KB, Roberts PM, Russell AJ, Thomson JE, Toms SM (2008) Tetrahedron: Asymmetry 19:1356

    Article  CAS  Google Scholar 

  53. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, E., Davies, S.G., Roberts, P.M. et al. Crystal Structures of Dipeptides Derived from the β-Amino Acids (1R,2S)-2-Aminocyclopentanecarboxylic Acid and (1S,2R,3S)-2-Amino-3-methylcyclopentanecarboxylic Acid. J Chem Crystallogr 41, 1722–1728 (2011). https://doi.org/10.1007/s10870-011-0164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0164-x

Keywords

Navigation