Skip to main content
Log in

A new definition and properties of the similarity value between two protein structures

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Knowledge regarding the 3D structure of a protein provides useful information about the protein’s functional properties. Particularly, structural similarity between proteins can be used as a good predictor of functional similarity. One method that uses the 3D geometrical structure of proteins in order to compare them is the similarity value (SV). In this paper, we introduce a new definition of the SV measure for comparing two proteins. To this end, we consider the mass of the protein’s atoms and concentrate on the number of protein’s atoms to be compared. This defines a new measure, called the weighted similarity value (WSV), adding physical properties to geometrical properties. We also show that our results are in good agreement with the results obtained by TM-SCORE and DALILITE. WSV can be of use in protein classification and in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. When the TM-SCORE is less than 0.2 it corresponds to randomly chosen unrelated proteins whereas with a score higher than 0.5 we generally assume the same fold in SCOP/CATH [21]. Here we normalized the TM-SCORE to 0.5 (i.e., we divided it by 2).

References

  1. Li, B., Turuvekere, S., Agrawal, M., La, D., Ramani, K.,Kihara, D.: Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71, 670 (2008)

  2. Rupp, B., Wang, J.: Predictive models for protein crystallization. Methods 34, 390 (2004)

    Article  Google Scholar 

  3. Arnold, K., Bordoli, L., Kopp, J., Schwedem, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinf. (Oxford, England) 22, 195–201 (2006)

    Article  Google Scholar 

  4. Kolodn, R., Petrey, D., Honig, B.: Protein structure comparison: implications for the nature of “fold space”, and structure and function prediction. Curr. Opin. Struct. Biol. 16, 393–398 (2006)

    Article  Google Scholar 

  5. Carugo, O.: Recent progress in measuring structural similarity between proteins. Curr. Protein Peptide Sci. 8, 219–241 (2007)

    Article  Google Scholar 

  6. Zhang, Y.: I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 101186 (2008)

    Google Scholar 

  7. Betancourt, M.R., Skolnick, J.: Universal similarity measure for comparing protein structures. Biopolymers 59, 305–309 (2001)

    Article  Google Scholar 

  8. Kihara, D., Sael, L., Chikhi, R., Esquivel-Rodriguez, J.: Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12(6), 520–530 (2011)

    Article  Google Scholar 

  9. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247(4), 536–540 (1995)

    Google Scholar 

  10. Andreeva, A., Howorth, D., Chandonia, J.-M., Brenner, S.E., Hubbard, T.J.P., Chothia, C., Murzin, A.G.: Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36, D419–425 (2008).

  11. Maiorov, V.N., Crippen, G.M.: Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 235(2), 625–634 (1994)

    Article  Google Scholar 

  12. Carugo, O., Pongor, S.: A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci.: Publ. Protein Soc. 10(7), 1470–1473 (2001)

    Article  Google Scholar 

  13. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH—a hierarchic classification of protein domain structures. Structure (London, England: 1993) 5, 1093–1108 (1997)

  14. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004)

    Article  Google Scholar 

  15. Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-SCORE = 0.5? Bioinformatics 26, 889–895 (2010)

    Article  Google Scholar 

  16. Levitt, M., Gerstein, M.: STRUCTAL. A structural alignment program. Stanford University (2005). Available from: http://csb.stanford.edu/levitt/Structal.

  17. Holm, L., Ouzounis, C., Sander, C., Tuparev, G., Vriend, G.: A database of protein structure families with common folding motifs. Protein Sci. 1, 1691–1698 (1992)

    Article  Google Scholar 

  18. Hasegawa, H., Holm, L.: Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol. 19, 341–348 (2009)

    Article  Google Scholar 

  19. Saberi Fathi, S.M., White, D.T., Tuszynski, J.A.: Geometrical comparison of two protein structures using Wigner-D functions. Proteins 82, 2756–2769 (2014). doi:10.1002/prot.24640

    Article  Google Scholar 

  20. Daniel, K.P., et al.: Reconstruction of SAXS Profiles from Protein Structures. Comput. Struct. Biotechnol. J. 8(11), e201308006 (2013). doi:10.5936/csbj.201308006

    MathSciNet  Google Scholar 

  21. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-SCORE. Nucleic Acids Res. 33(7), 2302–2309 (2005). doi:10.1093/nar/gki524

    Article  Google Scholar 

  22. Wigner, E.P.: Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg Verlag, Braunschweig (1931)

    Book  MATH  Google Scholar 

  23. Potts, D., Prestin, J., Vollrath, A.: A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numer. Algorithms 52, 355–384 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hielscher, R., Potts, D., Prestin, J., Schaeben, H., Schmalz, M.: The Radon transform on SO(3): a Fourier slice theorem and numerical inversion. Inverse Prob. 24, 025011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lipson, H., Taylor, C.A.: Fourier Transforms and X-ray Diffraction. Bell, London (1958)

  26. McKie, D., McKie, C., Essentials of Crystallography, Blackwell Scientific Publications, (1992). ISBN 0-632-01574-8.

  27. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond Accuracy, F-score and ROC: a Family of Discriminant Measures for Performance Evaluation, American Association for Artificial Intelligence, (2006). https://www.aaai.org/Papers/Workshops/2006/WS-06-06/WS06-06-006.pdf.

Download references

Acknowledgments

I thank Dr. Jack A. Tuszynski (University of Alberta) for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Saberi Fathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberi Fathi, S.M. A new definition and properties of the similarity value between two protein structures. J Biol Phys 42, 621–636 (2016). https://doi.org/10.1007/s10867-016-9429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9429-0

Keywords

Navigation