Skip to main content
Log in

A new approach to analyze the dynamic strength of eggs

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The mechanical behavior of eggshell was determined in terms of average rupture force and corresponding deformation. For the experiment, we selected goose eggs (Anser anser f. domestica). Samples of eggs were compressed along their x-axis and z-axis. The effect of the loading orientation can be described in terms of the eggshell contour curvature. Two different experimental methods were used: compression between two plates (loading rates up to 5 mm/s) and the Hopkinson split pressure bar technique. This second method enables achieving loading rates up to about 17 m/s. The response of goose eggs to this high loading rate was characterized also by simultaneous measurement of the eggshell surface displacements using a laser vibrometer and by the measurement of both circumferential and meridian strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Altuntaş, E., Şekeroğlu, A.: Effect of egg shape index on mechanical properties of chicken eggs. J. Food Eng. 85(4), 606–612 (2008). doi:10.1016/j.jfoodeng.2007.08.022

    Article  Google Scholar 

  2. Carter, T.C.: The hen’s egg: Shell forces at impact and quasi-static compression. Br. Poult. Sci. 17(2), 199–214 (1976). doi:10.1080/00071667608416267

    Article  Google Scholar 

  3. Marsh, A.P., Prakash, M., Semercigil, S.E., Turan, O.F.: An investigation and modelling of energy dissipation through sloshing in an egg-shaped shell. J. Sound Vib. 330(26), 6287–6295 (2011). doi:10.1016/j.jsv.2011.06.007

    Article  ADS  Google Scholar 

  4. So, G., Semercigil, S.E.: A note on a natural sloshing absorber for vibration control. J. Sound Vib. 269, 1119–1127 (2004). doi:10.1016/S0022-460X(03)00388-2

    Article  ADS  Google Scholar 

  5. Voisey, P.W., Hunt, J.R.: Effect of compression speed on the behaviour of eggshells. J. Agric. Eng. Res. 14(1), 40–46 (1969). doi:10.1016/0021-8634(69)90065-1

    Article  Google Scholar 

  6. Lichovnikova, M., Zeman, L.: Effect of housing system on the calcium requirement of laying hens and on eggshell quality. Czech J. Animal Sci. 53, 162–168 (2008)

    Google Scholar 

  7. Machal, L.: The relationship of shortening and strength of eggshell to some egg quality indicators and egg production in hens of different initial laying lines. Arch. Anim. Breed. 3, 287–296 (2002)

    Google Scholar 

  8. Lichovnikova, M., Zeman, L., Jandasek, J.: The effect of feeding untreated rapeseed and iodine supplement on egg quality. Czech J. Animal Sci. 53, 77–82 (2008)

    Google Scholar 

  9. Nedomova, S., Severa, L., Buchar, J.: Influence of hen egg shape on eggshell compressive strength. Int. Agrophys. 23, 249–256 (2009)

    Google Scholar 

  10. Severa, L., Nemecek, J., Nedomova, S., Buchar, J.: Determination of micromechanical properties of a hen’s eggshell by means of nanoindentation. J. Food Eng. 101(2), 146–151 (2010). doi:10.1016/j.jfoodeng.2010.06.013

    Article  Google Scholar 

  11. Voisey, P.W., Hamilton, J.R.: Factors affecting the non-destructive and destructive methods of measuring egg shell strength by the quasi-static compression test 1. Br. Poult. Sci. 17, 103–124 (1976)

    Article  Google Scholar 

  12. Buchar, J., Nedomova, S., Trnka, J., Strnkova, J.: Behaviour of Japanese quail eggs under mechanical compression. Int. J. Food Prop. 18(5), 1110–1118 (2015). doi:10.1080/10942912.2013.862634

    Article  Google Scholar 

  13. Nedomova, S., Kumbar, V., Trnka, J., Buchar, J.: Effect of the loading rate on compressive properties of goose eggs. J. Biol. Phys. 42(2), 223–233 (2016). doi:10.1007/s10867-015-9403-2

    Article  Google Scholar 

  14. Nedomova, S., Trnka, J., Dvorakova, P., Buchar, J.: Hen’s eggshell strength under impact loading. J. Food Eng. 94(3–4), 350–357 (2009). doi:10.1016/j.jfoodeng.2009.03.028

  15. Gray, G.T.: Classic split-Hopkinson pressure bar testing. In ASM Handbook 8: Mechanical Testing an Evaluation, eds. Kuhn H, Medlin D. ASM International. Materials Park, pp. 462–476. Ohio (2000)

  16. Nedomova, S., Buchar, J.: Goose eggshell geometry. Res. Agric. Eng. 60, 100–106 (2014)

    Google Scholar 

  17. Follansbee, P.S., Frantz, C.: Wave propagation in the split Hopkinson pressure bar. J. Eng. Mater. Technol. (ASME) 105(1), 61–66 (1983). doi:10.1115/1.3225620

    Article  Google Scholar 

  18. Gorham, D., Wu, X.: An empirical method of dispersion correction in the compressive Hopkinson bar test. J. Phys. 7(C3), 223–228 (1997). doi:10.1051/jp4:1997340

    Google Scholar 

  19. Curry, R., Cloete, T., Govender, R.: Implementation of viscoelastic Hopkinson bars. EPJ Web of Conferences 26, 01044 (2012). doi:10.1051/epjconf/20122601044

    Article  Google Scholar 

  20. Butt, H.S.U., Xue, P.: Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials. Int. J. Impact Eng. 74, 83–91 (2014). doi:10.1016/j.ijimpeng.2013.11.010

  21. Zhao, H., Gary, G., Klepaczko, J.R.: On the use of a viscoelastic split Hopkinson pressure bar. Int. J. Impact Eng. 19(4), 319–330 (1997). doi:10.1016/S0734-743X(96)00038-3

    Article  Google Scholar 

  22. Gama, B.A., Lopatnikov, S.L., Gillespie, J.W.: Hopkinson bar experimental technique: a critical review. Appl. Mech. Rev. 57(4), 223–250 (2004). doi:10.1115/1.1704626

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Institute of Thermomechanics AS CR, c.v.v.i. of the Czech Academy of Sciences through project No. RVO: 61388998. This work was also supported by the project TP 6/2015, financed by Internal Grant Agency FA MENDELU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Kumbár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trnka, J., Nedomová, Š., Kumbár, V. et al. A new approach to analyze the dynamic strength of eggs. J Biol Phys 42, 525–537 (2016). https://doi.org/10.1007/s10867-016-9420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9420-9

Keywords

Navigation