Skip to main content
Log in

Stochastic dynamic study of optical transition properties of single GFP-like molecules

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Due to high fluctuations and quantum uncertainty, the processes of single-molecules should be treated by stochastic methods. To study fluorescence time series and their statistical properties, we have applied two stochastic methods, one of which is an analytic method to study the off-time distributions of certain fluorescence transitions and the other is Gillespie’s method of stochastic simulations. These methods have been applied to study the optical transition properties of two single-molecule systems, GFPmut2 and a Dronpa-like molecule, to yield results in approximate agreement with experimental observations on these systems. Rigorous oscillatory time series of GFPmut2 before it unfolds in the presence of denaturants have not been obtained based on the stochastic method used, but, on the other hand, the stochastic treatment puts constraints on the conditions under which such oscillatory behavior is possible. Furthermore, a sensitivity analysis is carried out on GFPmut2 to assess the effects of transition rates on the observables, such as fluorescence intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    Article  ADS  Google Scholar 

  2. Qian, H., Kou, S.C.: Statistics and related topics in single-molecule biophysics. Annu. Rev. Stat. Appl. 1, 465–492 (2014)

    Article  Google Scholar 

  3. Gopich, I.V., Szabo, A.: Theory of the statistics of kinetic transitions with applications to single–molecule enzyme catalysis. J. Chem. Phys. 124, 154712 (2006)

    Article  ADS  Google Scholar 

  4. Doob, J.L.: Markoff chains – denumerable case. Trans. Amer. Math. Soc. 58, 455–473 (1945)

    MathSciNet  MATH  Google Scholar 

  5. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17, 10–18 (1975)

    Article  ADS  Google Scholar 

  6. McQuarrie, D.A.: Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 413–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunker, D.L., Garrett, B., Kleindienst, T., Long III, G.S.: Discrete simulation methods in combustion kinetics. Combust. Flame 23, 373–379 (1974)

    Article  Google Scholar 

  8. Tsien, R.Y.: The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)

    Article  Google Scholar 

  9. Heim, R., Prasher, D.C., Tsien, R.Y.: Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Nat. Acad. Sci. U.S.A. 91, 12501–12504 (1994)

    Article  ADS  Google Scholar 

  10. Cormack, B.P., Valdivia, R.H., Falkow, S.: FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996)

    Article  Google Scholar 

  11. Baldini, G., Cannone, F., Chirico, G.: Pre-unfolding resonant oscillations of single green fluorescent protein molecules. Science 309, 1096–1100 (2005)

    Article  ADS  Google Scholar 

  12. Cannone, F., Collini, M., Chirico, G., Baldini, G., Bettati, S., Campanini, B., Mozzarelli, A.: Environment effects on the oscillatory unfolding kinetics of GFP. Eur. Biophys. J. 36, 795–803 (2007)

    Article  Google Scholar 

  13. Patterson, G.H., Lippincott-Schwartz, J.: A photoactivativatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002)

    Article  ADS  Google Scholar 

  14. Ando, R., Mizuno, H, Miyawaki, A: Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004)

    Article  ADS  Google Scholar 

  15. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  16. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2014)

    Article  ADS  Google Scholar 

  17. Kou, S.C., Cherayil, B.J., Min, W., English, B.P., Xie, X.S.: Single-molecule Michaelis-Menten equations. J. Phys. Chem. B 109, 19068–19081 (2005)

    Article  Google Scholar 

  18. Qian, H., Elson, E.L.: Single-molecule enzymology: Stochastic Michaelis-Menten kinetics. Biophys. Chem. 101–102, 565–576 (2002)

    Article  Google Scholar 

  19. Brejc, K., Sixma, T.K., Kitts, P.A., Kain, S.R., Tsien, R.Y., Ormo, M., Remington, S.J.: Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 94, 2306–2311 (1997)

    Article  ADS  Google Scholar 

  20. Creemers, T.M.H., Lock, A.J., Subramaniam, V., Jovin, T.M., Völker, S.: Photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nat. Struct. Mol. Bio. 6, 557–560 (1999)

    Article  Google Scholar 

  21. Zimmer, M.: The green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–782 (2002)

    Article  Google Scholar 

  22. Weber, W., Helms, V., McCammon, J.A., Langhoff, P.W.: Shedding light on the dark and weakly fluorescent states of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 96, 6177–6182 (1999)

    Article  ADS  Google Scholar 

  23. Chattoraj, M., King, B.A., Bublitz, G.U., Boxer, S.G.: Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proc. Natl. Acad. Sci. U.S.A. 93, 8362–8367 (1996)

    Article  ADS  Google Scholar 

  24. Volkmer, A., Subramaniam, V., Birch, D.J., Jovin, T.M.: One- or two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent protein. Biophys. J. 78, 1589–1598 (2000)

    Article  Google Scholar 

  25. Heikal, A.A., Hess, S.T., Webb, W.W.: Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): Acid-base specificity. Chem. Phys. 274, 37–55 (2001)

    Article  ADS  Google Scholar 

  26. Haupts, U., Maiti, S., Schwille, P., Webb, W.W.: Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescent correlation spectroscopy. Proc. Nat. Acad. Sci. U.S.A. 95, 13573–13578 (1998)

    Article  ADS  Google Scholar 

  27. Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S., Lukyanov, K.A.: Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21, 191–194 (2003)

    Article  Google Scholar 

  28. Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., Labas, Y.A., Savitsky, A.P., Markelov, M.L., Zaraisky, A.G., Zhao, X., Fang, Y., et al.: Natural animal coloration can be determined by a nonfluorescent protein analog. J. Bio. Chem. 275, 14 (2008)

    Google Scholar 

  29. Heikal, A.A., Hess, S.T., Baird, G.S., Tsien, R.Y., Webb, W.W.: Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (dsRed) and yellow (citrine). Proc. Natl. Acad. Sci. U.S.A. 97, 11996–12001 (2000)

    Article  ADS  Google Scholar 

  30. Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Ann. Rev. Phys. Chem. 34, 419–461 (1983)

    Article  ADS  Google Scholar 

  31. Hu, D., Yuan, J.-M.: Time-dependent sensitivity analysis of biological networks: Coupled MAPK and PI3K signal transduction pathways. J. Phys. Chem. A 110, 5361–5370 (2006)

    Article  Google Scholar 

  32. Dickinson, R.P., Gelinas, R.J.: Sensitivity analysis of ordinary differential equation systems–A direct method. J. Comput. Phys. 21, 123–143 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Shen, J.: A direct method of calculating sensitivity coefficients of chemical kinetics. J. Chem. Phys. 111, 7209–7214 (1999)

    Article  ADS  Google Scholar 

  34. Dunker, A.M.: The decoupled direct method for calculating sensitivity coefficients in chemical kinetics. J. Chem. Phys. 81, 2385–2393 (1984)

    Article  ADS  Google Scholar 

  35. Andresen, M., Stiel, A.C., Trowitzsch, S., Weber, G., Eggeling, C., Wahl, M.C., Hell, S.W., Jakobs, S.: Structural basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. U.S.A. 104, 13005–13009 (2007)

    Article  ADS  Google Scholar 

  36. Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., Hofkens, J.: Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. U.S.A. 102, 9511–9516 (2005)

    Article  ADS  Google Scholar 

  37. Yang, F., Moss, L.G., Phillips, G.N.J.: The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996)

    Article  Google Scholar 

  38. Qian, H.: Cycle kinetics, steady-state thermodynamics and motors: A paradigm for living matter physics. J. Phys. Condens. Matt. 17, S3783–S3794 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Mr. John Bridstrup for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Min Yuan.

Appendix: The off-time distribution for the 4-state and 6-state models

Appendix: The off-time distribution for the 4-state and 6-state models

For the 6-state model, the probability that it takes less time than t to reach the next green emission from state N is:

$$\begin{array}{@{}rcl@{}} P(T_{N}<t) & =& P(T_{k_{2}}<T_{k_{7}})P(T_{k_{9}}<T_{k_{3}})P(T_{k_{1}}+T_{k_{2}}+T_{k_{9}}<t)\\ && +P(T_{k_{2}}<T_{k_{7}})P(T_{3}<T_{k_{9}})P(T_{k_{1}}+T_{k_{2}}+T_{k_{3}}+T_{k_{4}}<t)\\ && +P(T_{k_{7}}<T_{k_{2}})P(T_{k_{1}}+T_{k_{7}}+T_{N}<t). \end{array} $$
(A.1)

The probability distribution of T N can be shown to be

$$\begin{array}{@{}rcl@{}} f_{T_{N}}(t) \!& =&\! \frac{dP(T_{N}<t)}{dt}\\ \!& =&\! {{\int}_{0}^{t}}{\int}_{0}^{t_{1}}dt_{1}dt_{2}e^{-k_{7}(t_{1}-t_{2})}e^{-k_{3}(t-t_{1})}k_{1}e^{-k_{1}t_{2}}k_{2}e^{-k_{2}(t_{1}-t_{2})}k_{9}e^{-k_{9}(t-t_{1})}\\ && +{{\int}_{0}^{t}}{\int}_{0}^{t_{1}}{\int}_{0}^{t_{2}}dt_{1}dt_{2}dt_{3}e^{-k_{7}(t_{2}-t_{3})}e^{-k_{9}(t_{1}-t_{2})}k_{1}e^{-k_{1}t_{3}}k_{2}e^{-k_{2}(t_{2}-t_{3})}k_{3}e^{-k_{3}(t_{1}-t_{2})}\\&&\times k_{4}e^{-k_{4}(t-t_{1})}\\ && +{{\int}_{0}^{t}}{\int}_{0}^{t_{1}}dt_{1}dt_{2}e^{-k_{2}(t_{1}-t_{2})}k_{1}e^{-k_{1}t_{2}}k_{7}e^{-k_{7}(t_{1}-t_{2})}f_{T_{N}}(t-t_{1})\\ \!& =&\! \frac{k_{1}k_{2}k_{9}}{-k_{1}+k_{2}+k_{7}}\left( \frac{e^{-k_{1}t}-e^{-k_{3}t-k_{9}t}}{-k_{1}+k_{3}+k_{9}}-\frac{e^{-k_{2}t_{1}-k_{7}t_{1}}-e^{-k_{3}t-k_{9}t}}{-k_{2}-k_{7}+k_{3}+k_{9}}\right)+\frac{k_{1}k_{2}k_{3}k_{4}}{k_{7}-k_{1}+k_{2}}\\ &&\times\left( \frac{\frac{e^{-k_{1}t}-e^{-k_{4}t}}{k_{4}-k_{1}}-\frac{e^{-k_{9}t-k_{3}t}-e^{-k_{4}t}}{-k_{9}-k_{3}+k_{4}}}{k_{9}-k_{1}+k_{3}}-\frac{\frac{e^{-k_{7}t-k_{2}t}-e^{-k_{4}t}}{k_{4}-k_{7}-k_{2}}-\frac{e^{-k_{9}t_{1}-k_{3}t_{1}}-e^{-k_{4}t}}{-k_{9}-k_{3}+k_{4}}}{k_{9}-k_{7}-k_{2}+k_{3}}\right)\\ && +\frac{k_{1}k_{7}}{k_{2}-k_{1}+k_{7}}{{\int}_{0}^{t}}dt_{1}(e^{-k_{1}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}})f_{T_{N}}(t-t_{1}). \end{array} $$
(A.2)

After applying the rule for the Laplace transform of a convolution, (A.2) yields

$$\begin{array}{@{}rcl@{}} \tilde{f}_{T_{N}}(s) & =& \frac{k_{1}k_{2}k_{9}}{-k_{1}+k_{2}+k_{7}}(\frac{\frac{1}{s+k_{1}}-\frac{1}{s+k_{3}+k_{9}}}{-k_{1}+k_{3}+k_{9}}-\frac{\frac{1}{s+k_{2}+k_{7}}-\frac{1}{s+k_{3}+k_{9}}}{-k_{2}-k_{7}+k_{3}+k_{9}})\\ & & +\frac{k_{1}k_{2}k_{3}k_{4}}{k_{7}-k_{1}+k_{2}}\left( \frac{\frac{\frac{1}{s+k_{1}}-\frac{1}{s+k_{4}}}{k_{4}-k_{1}}-\frac{\frac{1}{s+k_{3}+k_{9}}-\frac{1}{s+k_{4}}}{-k_{9}-k_{3}+k_{4}}}{k_{9}-k_{1}+k_{3}}-\frac{\frac{\frac{1}{s+k_{2}+k_{7}}-\frac{1}{s+k_{4}}}{k_{4}-k_{7}-k_{2}}-\frac{\frac{1}{s+k_{3}+k_{9}}-\frac{1}{s+k_{4}}}{-k_{9}-k_{3}+k_{4}}}{k_{9}-k_{7}-k_{2}+k_{3}}\right)\\ & & +\frac{k_{1}k_{7}}{k_{2}-k_{1}+k_{7}}(\frac{1}{s+k_{1}}-\frac{1}{s+k_{2}+k_{7}})\tilde{f}_{T_{N}(s)}. \end{array} $$
(A.3)

Therefore,

$$ \tilde{f}_{T_{N}}(s) = \frac{(k_{9}s+k_{4}k_{9}+k_{3}k_{4})k_{1}k_{2}}{(s^{2}+sk_{2}+sk_{7}+sk_{1}+k_{1}k_{2})(s+k_{4})(s+k_{3}+k_{9})}. $$
(A.4)

The probability of off-time less than t is

$$\begin{array}{@{}rcl@{}} P(t_{off}<t) \!& =&\! \frac{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}}{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}+P_{A*}k_{4}}P(T_{k_{7}}<T_{k_{2}})P(T_{k_{6}}<T_{k_{8}})P(T_{k_{6}}\,+\,T_{k_{1}}+T_{k_{7}}+T_{N}<t)\\ && +\frac{P_{A*}k_{4}}{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}+P_{A*}k_{4}}P(T_{k_{5}}<T_{k_{10}})P(T_{k_{6}}<T_{k_{8}})\\&&\times P(T_{k_{5}}+T_{k_{6}}+T_{k_{1}}+T_{k_{7}}+T_{N}<t) \end{array} $$
(A.5)

where P I, P A are the probabilities of the protein being in states I* and A*, and \(T_{k_{i}}\) is the time it takes to complete the transition with rate k i . The distribution of the off-time can be shown as:

$$\begin{array}{@{}rcl@{}} f_{t_{off}}(t) & =& \frac{dP(t_{off}(t)<t)}{dt}\\ & = &\frac{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}}{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}+P_{A*}k_{4}}\\ & & \times{{\int}_{0}^{t}}{\int}_{0}^{t_{1}}{\int}_{0}^{t_{2}}dt_{1}dt_{2}dt_{3}e^{-k_{2}(t_{1}-t_{2})}e^{-k_{8}t_{3}}k_{6}e^{-k_{6}t_{3}}k_{1}e^{-k_{1}(t_{2}-t_{3})}k_{7}e^{-k_{7}(t_{1}-t_{2})}\\&&\times f_{T_{N}}(t-t_{1})\\ & & +\frac{P_{A*}k_{4}}{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}+P_{A*}k_{4}}{{\int}_{0}^{t}}{\int}_{0}^{t_{1}}{\int}_{0}^{t_{2}}{\int}_{0}^{t_{3}}dt_{1}dt_{2}dt_{3}dt_{4}e^{-k_{10}t_{4}}e^{-k_{8}(t_{3}-t_{4})}e^{-k_{2}(t_{1}-t_{2})}\\ && \times k_{5}e^{-k_{5}t_{4}}k_{6}e^{-k_{6}(t_{3}-t_{4})}k_{1}e^{-k_{1}e^{-k_{1}(t_{2}-t_{3})}}k_{7}e^{-k_{7}(t_{1}-t_{2})}f_{T_{N}}(t-t_{1}). \end{array} $$
(A.6)

We rewrite (A.6) as:

$$ f_{t_{off}}(t) = \frac{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}}{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}+P_{A*}k_{4}}k_{1}k_{6}k_{7}I_{1}+\frac{P_{A*}k_{4}}{P_{I*}\frac{{k_{9}^{2}}}{k_{9}+k_{3}}+P_{A*}k_{4}}k_{5}k_{6}k_{1}k_{7}I_{2} $$
(A.7)

where

$$\begin{array}{@{}rcl@{}} I_{1} & =& {{\int}_{0}^{t}}{\int}_{0}^{t_{1}}{\int}_{0}^{t_{2}}dt_{1}dt_{2}dt_{3}e^{-k_{2}(t_{1}-t_{2})}e^{-k_{8}t_{3}}e^{-k_{6}t_{3}}e^{-k_{1}(t_{2}-t_{3})}e^{-k_{7}(t_{1}-t_{2})}f_{T_{N}}(t-t_{1})\\ & =& {{\int}_{0}^{t}}dt_{1}\frac{\frac{e^{-k_{6}t_{1}-k_{8}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}}}{-k_{6}-k_{8}+k_{2}+k_{7}}-\frac{e^{-k_{1}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}}}{k_{2}+k_{7}-k_{1}}}{k_{1}-k_{6}-k_{8}}f_{T_{N}}(t-t_{1}) \end{array} $$
(A.8)

and

$$\begin{array}{@{}rcl@{}} I_{2} & =& {{\int}_{0}^{t}}{\int}_{0}^{t_{1}}{\int}_{0}^{t_{2}}{\int}_{0}^{t_{3}}dt_{1}dt_{2}dt_{3}dt_{4}e^{-k_{10}t_{4}}e^{-k_{8}(t_{3}-t_{4})}e^{-k_{2}(t_{1}-t_{2})}\\ &&\times e^{-k_{5}t_{4}}e^{-k_{6}(t_{3}-t_{4})}e^{-k_{1}e^{-k_{1}(t_{2}-t_{3})}}e^{-k_{7}(t_{1}-t_{2})}f_{T_{N}}(t-t_{1})\\ &&\times {{\int}_{0}^{t}}dt_{1}\frac{\frac{e^{-k_{10}t_{1}-k_{5}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}}}{-k_{10}-k_{5}+k_{2}+k_{7}}-\frac{e^{-k_{1}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}}}{k_{2}+k_{7}-k_{1}}}{(-k_{10}-k_{5}+k_{6}+k_{8})(-k_{10}-k_{5}+k_{1})}f_{T_{N}}\\ &&+ {{\int}_{0}^{t}}dt_{1}\frac{\frac{e^{-k_{6}t_{1}-k_{8}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}}}{-k_{6}-k_{8}+k_{2}+k_{7}}-\frac{e^{-k_{1}t_{1}}-e^{-k_{2}t_{1}-k_{7}t_{1}}}{k_{2}+k_{7}-k_{1}}}{(-k_{10}-k_{5}+k_{6}+k_{8})(-k_{6}-k_{8}+k_{1})}f_{T_{N}}(t-t_{1}). \end{array} $$
(A.9)

The Laplace transform of the off-time distribution yields:

$$\begin{array}{@{}rcl@{}} \tilde{f}_{t_{off}}(s) & =& \frac{(s{k_{9}^{2}}+k_{5}{k_{9}^{2}}+{k_{9}^{2}}k_{10}+k_{3}k_{5}k_{9}+{k_{3}^{2}}k_{10}+{k_{3}^{2}}k_{5}+k_{3}k_{9}k_{10})(sk_{9}+k_{4}k_{9}+k_{3}k_{4})}{(s+k_{4})(s+k_{3}+k_{9})(s^{2}+k_{2}s+k_{7}s+k_{1}s+k_{1}k_{2})(s+k_{6}+k_{8})(s+k_{1})}\\ &&\times \frac{1}{(s+k_{5}+k_{10})(s+k_{2}+k_{7})}\\&&\times\frac{{k_{1}^{2}}k_{2}k_{5}k_{6}k_{7}}{k_{3}k_{5}k_{9}+{k_{3}^{2}}k_{5}+k_{3}k_{9}k_{10}+{k_{3}^{2}}k_{10}+k_{5}{k_{9}^{2}}}. \end{array} $$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Yuan, JM. Stochastic dynamic study of optical transition properties of single GFP-like molecules. J Biol Phys 42, 271–297 (2016). https://doi.org/10.1007/s10867-015-9407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9407-y

Keywords

Navigation