Skip to main content
Log in

Concentration-dependent effects on fully hydrated DNA at terahertz frequencies

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Using terahertz time-domain spectroscopy (THz-TDS), the frequency-dependent dielectric constant of deoxyribonucleic acid (DNA) in solution was measured. The response of the buffer solution is dominated by two Debye modes in this frequency range, and, from an analysis of the concentration dependence, the presence of the DNA increases the main relaxation time and dielectric constant. This reflects the fact that the water in the hydration layer is more tightly bound under the influence of the DNA molecule in comparison to bulk water. This dynamical slowing down with increasing DNA concentration is similar to what is observed with purine nucleotides, but opposite to the behavior of pyrimidine nucleotides. In addition, a suspension model was used with the concentration-dependent data to isolate the dielectric response of the hydrated DNA molecule. The data for the hydrated DNA molecule is still dominated by a Debye response. It is also possible to determine the thickness of the hydration layer, and the DNA molecule influences the surrounding water out to 16 or 17 Å, which corresponds to about six effective hydration layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saenger, W., Hunter, W.N., Kennard, O.: DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324, 385–388 (1986)

  2. Otwinowski, Z., Schevitz, R.W., Zhang, R.-G., Lawson, C.L., Joachimiak, A., Marmorstein, R.Q., Luisi, B.F., Sigler, P.B.: Crystal structure of trp represser/operator complex at atomic resolution. Nature 335, 321–329 (1988)

  3. Yan Qiu, Q., Gottfried, O., Kurt, W.: NMR detection of hydration water in the intermolecular interface of a protein-DNA complex. J. Am. Chem. Soc. 115, 1189–1190 (1993)

  4. Lawson, C.L., Carey, J.: Tandem binding in crystals of a trp represser/operator half-site complex. Nature 366, 178–182 (1993)

  5. Jing, X., Plaxco, K.W., James Allen, S.: Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci. 15, 1175–1181 (2006)

  6. Ebbinghaus, S., Seung Joong, K., Matthias, H., Xin, Y., Udo, H., Martin, G., Leitner, D.M., Martina, H.: An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. U. S. A. 103, 12301–12306 (2006)

  7. Arora, A., Luong, T.Q., Krüger, M., Kim, Y.J., Nam, C.-H., Manz, A., Havenith, M.: Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution. Analyst (Cambridge, U. K.) 137, 575–579 (2012)

  8. Polley, D., Patra, A., Mitra, R.: Dielectric relaxation of the extended hydration sheathe of DNA in the THz frequency region. Chem. Phys. Lett. 586, 143–147 (2013)

  9. Heyjin, S., Da-Hye, C., Seonghoon, J., Jaehun, P., Woong-Yang, P., Oh Sang, K.: Determination of relaxation time of DNA hydration water by THz-TDS. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2012 37th International Conference 23–28 September 2012. IEEE, New York (2008)

  10. Fischer, B.M., Walther, M., Uhd Jepsen, P.: Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 47, 3807 (2002)

  11. Glancy, P., Beyermann, W.P.: Dielectric properties of fully hydrated nucleotides in the terahertz frequency range. J. Chem. Phys. 132, 245102 (2010)

  12. Markelz, A.G., Roitberg, A., Heilweil, E.J.: Pulsed Terahertz Spectroscopy of DNA, Bovine Serum Albumin and Collagen between 0.06 to 2.00 THz. Chem. Phys. Lett. 320, 42–48 (2000)

  13. Wittlin, A., Genzel, L., Kremer, F., Häseler, S., Poglitsch, A.: Far-infrared spectroscopy on oriented films of dry and hydrated DNA. Phys. Rev. A. 34, 493–500 (1986)

  14. Michael, F., Poole, A.G., Goymour, C.: Infrared study of the state of water in the hydration shell of DNA. Can. J. Chem. 48, 1536–1542 (1970)

  15. Debye, P.: Polar Molecules. Dover (1929)

  16. McNary, A.J.: Terahertz time Domain Spectroscopy (THz-TDS) of Polar Liquids. PhD Thesis, Riverside, University of California (2005)

  17. Sato, T., Buchner, R.: Dielectric Relaxation Processes in Ethanol/Water Mixtures. J. Phys. Chem. A 108, 5007–5015 (2004)

  18. Kaatze, U.: Microwave dielectric properties of liquids. Radiat. Phys. Chem. 45, 549–566 (1995)

  19. Franks, F.: Water: A Comprehensive Treatise, Volume 3. Aqueous solutions of Simple Electrolytes. Plenum, New York (1973)

  20. Pethig, R.: Protein-Water Interactions Determined by Dielectric Methods. Annu. Rev. Phys. Chem. 43, 177–205 (1992)

  21. Kaatze, U., Heribert, B., Reinhard, P.: Dielectric spectroscopy on aqueous solutions of some zwitterionic amino acids. J. Mol. Liq. 30, 101–113 (1985)

  22. Shepherd, J.C.W., Grant, E.H.: Dielectric Properties of Amino Acid Solutions. Proc. R. Soc. A. 307, 345–357 (1968)

  23. Aaron, M.W., Grant, E.H.: Dielectric and viscosity studies on the dipeptides of alanine and glycine. Brit. J. Appl. Phys. 18, 957–963 (1967)

  24. Thenappan, T., Sankar, U.: Dielectric studies of hydrogen bonded complexes of alcohols with NN-dimethyl formamide. J. Mol. Liq. 126, 38–42 (2006)

  25. Sato, T., Buchner, R., Fernandez, Š., Chiba, A., Werner, K.: Dielectric Relaxation Spectroscopy of Amino acid aqueous solutions: Dynamics and interactions in Glycine aqueous solutions. J. Mol. Liq. 117, 93–98 (2005)

  26. Glancy, P., Beyermann, W.P.: Dielectric response of suspended nucleotides at terahertz frequencies: Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves, 15–19 September 2008. IEEE, New York (2008)

  27. Samir Kumar, P., Jorge, P., Biman, B., Zewail, A.H.: Biological water: femtosecond dynamics of macromolecular hydration. J. Phys. Chem. B 106, 12376–12395 (2002)

  28. Balasubramanian, S., Bagchi, B.: Slow orientational dynamics of water molecules at a micellar surface. J. Phys. Chem. B 106, 3668–3672 (2002)

  29. Tarek, M., Tobias, D.J.: The Dynamics of Protein Hydration Water: A Quantitative Comparison of Molecular Dynamics Simulations and Neutron-scattering Experiments Biophys. J. 79, 3244–3257 (2000)

  30. Schneider, B., Patel, K., Berman, H.M.: Hydration of the phosphate group in double-helical DNA. Biophys. J. 75, 2422–2434 (1998)

  31. Magee, M.D.: Dielectric relaxation time, a non-linear function of solvent viscosity Chem. Soc. Faraday Trans. II 70, 929–938 (1974)

  32. Fanan, M.: Microemulsions Properties and Applications. CRC Press, Boca Raton (2009)

  33. Ilias, M., Xiuli, G., Ford, R.C., Jichen, L.: Recent progress on our understanding of water around biomolecules. J. Mol. Liq. 117, 107–116 (2005)

  34. Kraszewski, A., Kulinski, S., Matuszewski, M.: Dielectric properties and a model of biphase water suspension at 9.45 GHz. J. Appl. Phys. 47, 1275–1277 (1976)

  35. Kraszewski, A.: Prediction of the Dielectric Properties of Two-Phase Mixtures. J. Microwave Power. 12(3), 215–222 (1977)

  36. McNary, A.J.: The Terahertz Dielectric Response of Water in Zeolites. M.S. Thesis, University of California, Riverside (2005)

  37. Mark, G., Lynden-Bell, R.M.: What is the natural boundary of a protein in solution? J. Mol. Biol. 230, 641–650 (1993)

  38. Rau, D.C., Parsegian, V.A.: Direct Measurement of the Intermolecular Forces Between Counterion-condensed DNA Double Helices. Evidence for Long Range Attractive Hydration Forces. Biophys. J. 61, 246–259 (1992)

  39. Guldbrand, L.E., Forester, T.R., Lynden-Bell, R.M.: Distribution and dynamics of mobile ions in systems of ordered B-DNA. Mol. Phys. 67, 473–493 (1989)

  40. Rau, D.C., Lee, B., Parsegian, V.A.: Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices. Proc. Natl. Acad. Sci. U. S. A. 81, 2621–2625 (1984)

  41. Lavalle, N., Lee, S.A., Rupprecht, A.: Counterion Effects on the Physical Properties and the A to B Transition of Calf-Thymus DNA Films. Biopolymers 30, 877–887 (1990)

Download references

Acknowledgments

This work was funded by the Cooperative Agreement on Research and Education (CARE) program with Los Alamos National Laboratory and the advisement and laboratory of W.P. Beyermann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Glancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glancy, P. Concentration-dependent effects on fully hydrated DNA at terahertz frequencies. J Biol Phys 41, 247–256 (2015). https://doi.org/10.1007/s10867-015-9377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9377-0

Keywords

Navigation