Skip to main content

Advertisement

Log in

An elastic rod model to evaluate effects of ionic concentration on equilibrium configuration of DNA in salt solution

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

As a coarse-gained model, a super-thin elastic rod subjected to interfacial interactions is used to investigate the condensation of DNA in a multivalent salt solution. The interfacial traction between the rod and the solution environment is determined in terms of the Young–Laplace equation. Kirchhoff’s theory of elastic rod is used to analyze the equilibrium configuration of a DNA chain under the action of the interfacial traction. Two models are established to characterize the change of the interfacial traction and elastic modulus of DNA with the ionic concentration of the salt solution, respectively. The influences of the ionic concentration on the equilibrium configuration of DNA are discussed. The results show that the condensation of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of forces that drive DNA condensation. With the change of concentration, the DNA segments will undergo a series of alteration from the original configuration to the condensed configuration, and the spiral-shape appearing in the condensed configuration of DNA is independent of the original configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang, Z.: Modulating DNA configuration by interfacial traction: an elastic rod model to characterize DNA folding and unfolding. J. Biol. Phys. 37, 79–90 (2011)

    Article  Google Scholar 

  2. Benham, C.J.: Elastic model of super-coiling. Proc. Natl. Acad. Sci. U.S.A. 74, 2397–2401 (1977)

    Article  ADS  Google Scholar 

  3. Benham, C.J.: An elastic model of the large-scale structure of duplex DNA. Biopolymers 18, 609–623 (1979)

    Article  Google Scholar 

  4. Le Bret, M.: Relationship between the energy of superhelix formation, the shear modulus and the torsional Brownian motion of DNA. Biopolymers 17, 1939–1955 (1978)

    Article  Google Scholar 

  5. Le Bret, M.: Twist and writhing on short circular DNAs according to first-order elasticity. Biopolymers 23, 1835–1867 (1984)

    Article  Google Scholar 

  6. Gelbart, W.M., Bruinsma, R.F., Pincus, P.A., Parsegian, V.A.: DNA-inspired electrostatics. Phys. Today 53, 38–44 (2000)

    Article  Google Scholar 

  7. Shi, Y., Borovik, A.E., Hearst, J.E.: Elastic rod model incorporating shear and extension, generalized nonlinear Schrodinger equations, and novel closed-form solutions for supercoiled DNA. J. Chem. Phys. 103, 3166–3183 (1995)

    Article  ADS  Google Scholar 

  8. Manning, R.S., Maddocks, J.H., Kahn, J.D.: A continuum rod model of sequence–dependent DNA structure. J. Chem. Phys. 105, 5626–5646 (1996)

    Article  ADS  Google Scholar 

  9. Cherstvy, A.G.: Torque-induced deformations of charged elastic DNA rods: thin helices, loops, and precursors of DNA supercoiling. J. Biol. Phys. 37, 227–238 (2011)

    Article  Google Scholar 

  10. Cherstvy, A.G.: Collapse of highly charged polyelectrolytes triggered by attractive dipole-dipole and correlation-induced electrostatic interactions. J. Phys. Chem. 114, 5241–5249 (2010)

    Article  Google Scholar 

  11. Cherstvy, A.G.: Effect of a low-dielectric interior on DNA electrostatic response to twisting and bending. J. Phys. Chem. 111, 12933–12937 (2007)

    Article  Google Scholar 

  12. Tobias, I., Swigon, D., Coleman, B.D.: Elastic stability of DNA configuration: I general theory. Phys. Rev. E 61, 747–758 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. Coleman, B.D., Swigon, D., Tobias, I.: Elastic stability of DNA configuration: II Supercoiled plasmids with self-contact. Phys. Rev. E 61, 759–770 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Munteanu, M.G., Vlahovicek, K., Parthasarathy, S., Simon, I., Pongor, S.: Rod models of DNA: sequence-dependent anisotropic elastic modelling of local bending phenomena. Trends Biochem. Sci. 23, 341–347 (1998)

    Article  Google Scholar 

  15. Eslami-Mossallam, B., Ejtehadi, M.R.: An asymmetric elastic rod model for DNA. Phys. Rev. E 80, 011919 (2009)

    Article  ADS  Google Scholar 

  16. Coleman, B.D., Olson, W.K., Swigon, D.: Theory of sequence-dependent DNA elasticity. J. Chem. Phys. 118, 7127–7140 (2003)

    Article  ADS  Google Scholar 

  17. Slita, A.V., Kasyanenko, N.A., Nazarova, O.V., Gavrilova, I.I., Eropkina, E.M., Sirotkin, A.K., Smirnova, T.D., Kiselev, O.I., Panarin, E.F.: DNA–polycation complexes effect of polycation structure on physico-chemical and biological properties. J. Biotechnol. 127, 679–693 (2007)

    Article  Google Scholar 

  18. Parsegian, V.A., Rand, R.P., Rau, D.C.: Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proc. Natl. Acad. Sci. U.S.A. 97, 3987 (2000)

    Article  ADS  Google Scholar 

  19. Hud, N.V., Vilfan, I.D.: Toroidal DNA condensates: Unraveling the fine structure and the role of nucleation in determining size. Ann. Rev. Biophys. Biomol. Struct. 34, 295 (2005)

    Article  Google Scholar 

  20. Keyser, U.F., van Dorp, S., Lemay, S.G.: Tether forces in DNA electrophoresis. Chem. Soc. Rev. 39, 939 (2010)

    Article  Google Scholar 

  21. Leonard, C., Gousle, J.A.S.: Compact form of DNA induced by supermidine. Nature 259, 333 (1976)

    Article  Google Scholar 

  22. Li, W., Wang, P.-Y., Yan, J., Li, M.: Impact of DNA twist accumulation on progressive helical wrapping of torsionally constrained DNA. Phys. Rev. Lett. 109, 218–102 (2012)

    Google Scholar 

  23. Benham, C.J., Mielke, S.P.: DNA mechanics. Ann. Rev. Biomed. Eng. 7, 21–53 (2005)

    Article  Google Scholar 

  24. Travers, A.A., Thompson, J.M.: An introduction to the mechanics of DNA. Philos. Trans. R. Soc. A 362, 1265–1279 (2004)

    Article  MATH  ADS  Google Scholar 

  25. Liu, Y.-Z.: Nonlinear Mechanics of Thin Elastic Rod: Theoretical Basis of Mechanical Model of DNA (in Chinese). Tsinghua Press, Beijing (2006)

    Google Scholar 

  26. Bednar, J., Furrer, P., Stasiak, A., Dubochet, J.: The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. J. Mol. Biol. 235, 825–847 (1994)

    Article  Google Scholar 

  27. Brady, G., Foos, D., Benham, C.J.: Evidence for an interwound form of the superhelix in circular DNA. Biopolymers 23, 2963–2966 (1984)

    Article  Google Scholar 

  28. Swigon, D.: The mathematics of DNA structure, mechanics, and dynamics. In: Benham C.J. et al. (eds.) Mathematics of DNA Structure, Function and Interactions, pp. 293–320. Springer, Berlin (2009)

  29. Podgornik, R.: DNA off the Hooke. Nat. Nanotechnol. 1, 100–101 (2006)

    Article  ADS  Google Scholar 

  30. Gosule, L.C., Schellman, J.A.: Compact form of DNA induced by spermidine. Nature 59, 333–335 (1972)

    Google Scholar 

  31. Hud, N.V., Downing, K.H., Balhorn, R.: A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc. Nat. Acad. Sci. USA 92, 3581–3585 (1995)

    Article  ADS  Google Scholar 

  32. Hud, N.V., Downing, K.H.: Cryoelectron microscopy of λ phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc. Nat. Acad. Sci. USA 98, 14925–14930 (2001)

    Article  ADS  Google Scholar 

  33. Westcott, T.P., Tobias, I., Olson, W.K.: Modeling self-contact forces in the elasticity of DNA supercoiling. J. Chem. Phys. 107, 3967–3980 (1997)

    Article  ADS  Google Scholar 

  34. Leforestier, A., Livolant, F.: Structure of toroidal DNA collapsed inside the phage capsid. Proc. Nat. Acad. Sci. USA 106, 9157–9162 (2009)

    Article  ADS  Google Scholar 

  35. Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)

    Article  ADS  Google Scholar 

  36. Hamley, W.I. : Introduction to soft matter : synthetic and biological self-assembling materials. Reading (2008)

  37. Futian, Z.: Fundamentals of Molecular Interface Chemistry (in Chinese). Shanghai Scientific and Technology Literature Publishing House, Shanghai (2006)

    Google Scholar 

  38. Daoud, M., Williams, C.E.: Soft Matter Physics. Springer, Berlin (1999)

    Book  Google Scholar 

  39. Baumann, C.G., Smith, S.B., Bloomfield, V.A., Bustamante, C.: Ionic effects on the elasticity of single DNA molecules. Proc. Nat. Acad. Sci. USA 94, 6185–6190 (1997)

    Article  ADS  Google Scholar 

  40. Chen, W.: Differential geometry (in Chinese). Beijing University Press, Beijing (2006)

    Google Scholar 

  41. Zhao, Z.: Adsorption Principle in Application (in Chinese). Chemical Industry Press, Beijing (2005)

    Google Scholar 

  42. Liu, F., Tang, X.: Polymer Physics (in Chinese). Higher Education Press, Beijing (2004)

    Google Scholar 

  43. Smith, S.B., Finzi, L., Bustamante, C.: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 5085 (1992)

    Article  Google Scholar 

  44. Schlick, T.: Modeling Superhelical DNA: recent analytical and dynamic approaches. Current Opin. Struct. Biol. 5, 245–265 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

Support of the National Nature Science Foundation of China through Grant No. 11172130 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaixing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Huang, Z. & Wang, S. An elastic rod model to evaluate effects of ionic concentration on equilibrium configuration of DNA in salt solution. J Biol Phys 40, 179–192 (2014). https://doi.org/10.1007/s10867-014-9344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9344-1

Keywords

Navigation