Skip to main content

Advertisement

Log in

A critical assessment of the information processing capabilities of neuronal microtubules using coherent excitations

Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Evidence for signaling, communication, and conductivity in microtubules (MTs) has been shown through both direct and indirect means, and theoretical models predict their potential use in both classical and quantum information processing in neurons. The notion of quantum information processing within neurons has been implicated in the phenomena of consciousness, although controversies have arisen in regards to adverse physiological temperature effects on these capabilities. To investigate the possibility of quantum processes in relation to information processing in MTs, a biophysical MT model is used based on the electrostatic interior of the tubulin protein. The interior is taken to constitute a double-well potential structure within which a mobile electron is considered capable of occupying at least two distinct quantum states. These excitonic states together with MT lattice vibrations determine the state space of individual tubulin dimers within the MT lattice. Tubulin dimers are taken as quantum well structures containing an electron that can exist in either its ground state or first excited state. Following previous models involving the mechanisms of exciton energy propagation, we estimate the strength of exciton and phonon interactions and their effect on the formation and dynamics of coherent exciton domains within MTs. Also, estimates of energy and timescales for excitons, phonons, their interactions, and thermal effects are presented. Our conclusions cast doubt on the possibility of sufficiently long-lived coherent exciton/phonon structures existing at physiological temperatures in the absence of thermal isolation mechanisms. These results are discussed in comparison with previous models based on quantum effects in non-polar hydrophobic regions, which have yet to be disproved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Naundorf, B., Wolf, F., Volgushev, M.: Unique features of action potential initiation in cortical neurons. Nature 440, 1060 (2006). doi:10.1038/nature04610

    Article  ADS  Google Scholar 

  2. Penrose, R.: Shadows of the Mind. Oxford University Press, New York (1994)

    Google Scholar 

  3. Hameroff, S.: Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch-OR’ model of consciousness (and discussion). Philos. Trans. R. Soc. Lond. A 365, 1869–1896 (1998). doi:10.1098/rsta.1998.0254

    Article  MathSciNet  ADS  Google Scholar 

  4. Dustin, P.: MTs. Springer, New York (1978)

    Google Scholar 

  5. Roberts, K., Hyams, J.S.: Microtubules. Academic, New York (1979)

    Google Scholar 

  6. Tuszynski, J., Hameroff, S., Sataric, M.V., Trpisova, B., Nip, M.L.A.: Ferroelectric behavior in MT dipole lattices: implications for information processing, signaling and assembly/disassembly. J. Theor. Biol. 174, 371–380 (1995). doi:10.1006/jtbi.1995.0105

    Article  Google Scholar 

  7. Brown, J.A., Tuszynski, J.A.: Dipole interactions in axonal microtubules as a mechanism of signal propagation. Phys. Rev. E 56, 5834–5840 (1997). doi:10.1103/PhysRevE.56.5834

    Article  ADS  Google Scholar 

  8. Priel, A., Tuszynski, J.A., Cantiello, H.F.: The dendritic cytoskeleton as a computational device: an hypothesis. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness, pp. 293–325. Springer, Berlin (2006)

    Chapter  Google Scholar 

  9. Gundersen, G.G., Cook, T.A.: Microtubules and signal transduction. Curr. Opin. Cell Biol. 11, 81–94 (1999). doi:10.1016/S0955-0674(99)80010-6

    Article  Google Scholar 

  10. Glanz, J.: Cell biology: force-carrying web pervades living cell. Science 276, 678–679 (1997)

    Article  Google Scholar 

  11. Manitois, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U. S. A. 94, 849–854 (1997). doi:10.1073/pnas.94.3.849

    Article  ADS  Google Scholar 

  12. Priel, A., Tuszynski, J.A., Woolf, N.J.: Transitions in microtubule C-termini conformations as possible dendritic signaling phenomenon. Eur. Biophys. J. 35, 40–52 (2005). doi:10.1007/s00249-005-0003-0

    Article  Google Scholar 

  13. Cronly-Dillon, J., Perry, G.W.: Effect of visual experience on tubulin during a critical period of visual cortex development in the hooded rat. J. Physiol. 293, 469–484 (1979)

    Google Scholar 

  14. Lee, V.M.: Disruption of the cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 5, 663–668 (1995). doi:10.1016/0959-4388(95)80073-5

    Article  Google Scholar 

  15. Bjornstrom, K., Eintrei, C.: The difference between sleep and anaesthesia is in the intracellular signal. Acta Anaesthesiol. Scand. 47, 157–164 (2003). doi:10.1034/j.1399-6576.2003.00007.x

    Article  Google Scholar 

  16. Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–4206 (2000). doi:10.1103/PhysRevE.61.4194

    Article  ADS  Google Scholar 

  17. Tuszynski, J.A., Kurzynski, M.: Introduction to Molecular Biophysics. CRC, Florida (2003)

    Google Scholar 

  18. Tuszynski, J.A., Brown, J.A., Crawford, E., Carpenter, E.J., Nip, M.L.A., Dixon, J.M., Sataric, M.V.: Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math. Comput. Model. 41, 1055–1070 (2005). doi:10.1016/j.mcm.2005.05.002

    Article  MATH  MathSciNet  Google Scholar 

  19. Howard, W.D., Timasheff, S.N.: GDP state of tubulin: stabilization of double rings. Biochemistry 25, 8292–8300 (1986)

    Article  Google Scholar 

  20. Melki, R., Carlier, M.F., Pantaloni, D., Timasheff, S.N.: Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28, 9143–9152 (1989)

    Article  Google Scholar 

  21. McKean, P.G., Vaughan, S., Gull, K.: The extended tubulin superfamily. J. Cell Sci. 114, 2723–2733 (2001)

    Google Scholar 

  22. Vassilev, P.M., Dronzine, R.T., Vassileva, M.P., Georgiev, G.A.: Parallel arrays of microtubules in electric and magnetic fields. Biosci. Rep. 2, 1025–1029 (1982). doi:10.1007/BF01122171

    Article  Google Scholar 

  23. Kirson, E.D., Gurvich, Z., Schneiderman, R., Dekel, E., Itzhaki, A., Wasserman, Y., Schatzberger, R., Palti, Y.: Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64, 3288–3295 (2004). doi:10.1158/0008-5472.CAN-04-0083

    Article  Google Scholar 

  24. Mershin, A., Sanabria, H., Miller, J.H., Nawarathna, D., Skoulakis, E.M.C., Mavromatos, N.E., Kolomenski, A.A., Schuessler, H.A., Luduena, R.F., Nanopoulos, D.V.: Towards experimental tests of quantum effects in cytoskeletal proteins. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness, pp. 95–170. Springer, Berlin (2006)

    Chapter  Google Scholar 

  25. Fritsche, W., Böhm, K., Unger, E., Köhler, J.M.: Making electrical contact to single moleclules. Nanotechnology 9, 177–183 (1998). doi:10.1088/0957-4484/9/3/006

    Article  ADS  Google Scholar 

  26. Umnov, M., Paulsinski, O.A., Deymier, P.A., Guzman, R., Hoying, J., Barnaby, H., Yang, Y., Raghavan, S.: Experimental evaluation of electrical conductivity of microtubules. J. Mater. Sci. 42, 373–378 (2007). doi:10.1007/s10853-006-1075-7

    Article  ADS  Google Scholar 

  27. Goddard, G., Whittier, J.E.: Biomolecules as nanomaterials: interface characterization for sensor development. Proc. SPIE 6172, 617206 (2006). doi:10.1117/12.658771

    Article  Google Scholar 

  28. Fritzsche, W., Köhler, J.M., Böhm, K.J., Unger, E., Wagner, T., Kirsch, R., Mertig, M., Pompe, W.: Wiring of metallized microtubules by electron beam-induced structuring. Nanotechnology 10, 331–335 (1999). doi:10.1088/0957-4484/10/3/317

    Article  ADS  Google Scholar 

  29. Priel, A., Ramos, A.J., Tuszynski, J.A., Cantiello, H.F.: A biopolmer transistor: electrical amplification by microtubules. Biophys. J. 90, 4639–4643 (2006). doi:10.1529/biophysj.105.078915

    Article  ADS  Google Scholar 

  30. Minoura, I., Muto, E.: Dielectric measurement of individual microtubules using the electroorientation method. Biophys. J. 90, 3739–3748 (2006). doi:10.1529/biophysj.105.071324

    Article  ADS  Google Scholar 

  31. Tuszynski, J.A., Priel, A., Brown, J.A., Cantiello, H.F., Dixon, J.M.: Electronic and ionic conductivities of microtubules and actin filaments, their consequences for cell signaling and applications to bioelectronics. In: Lyshevski, E. (ed.) Nano and Molecular Electronics Handbook Vol. 9, Ch. 18. CRC, London (2007)

    Google Scholar 

  32. Tuszynski, J.A., Brown, J.A., Hawrylak, P.: Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible? Philos. Trans. R. Soc. Lond. A 356, 1897–1926 (1998). doi:10.1098/rsta.1998.0255

    Article  ADS  Google Scholar 

  33. Brown, J.A.: A Study of the interactions between electromagnetic fields and microtubules: ferroelectric effects, signal transduction and electronic conduction. Ph.D. thesis, University of Alberta (1999)

  34. Hameroff, S.: Ultimate Computing. North Holland, Amsterdam (1987)

    Google Scholar 

  35. Smith, S.A., Watt, R.C., Hameroff, S.R.: Cellular automata in cytoskeletal lattices. Physica D 10, 168–174 (1984). doi:10.1016/0167-2789(84)90259-8

    Article  MathSciNet  ADS  Google Scholar 

  36. Rasmussen, S., Karampurwala, H., Vaidyanath, R., Jensen, K.S., Hameroff, S.: Computational connectionism within neurons: a model of cytoskeletal automata subserving neural networks. Physica D 42, 428–449 (1990). doi:10.1016/0167-2789(90)90093-5

    Article  ADS  Google Scholar 

  37. Campbell, R.D.J.: Information processing in microtubules. Ph.D. thesis, Queensland University of Technology (2002)

  38. Hameroff, S.R., Dayhoff, J.E., Lahoz-Beltra, R., Samsonovich, A.V., Rasmussen, S.: Models for molecular computation: conformational automata in the cytoskeleton. Computer 25, 30–39 (1992). doi:10.1109/2.166406

    Article  Google Scholar 

  39. Lowe, J., Li, H., Downing, K.H., Nogales, E.: Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001). doi:10.1006/jmbi.2001.5077

    Article  Google Scholar 

  40. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A. 98, 10037–10041 (2001). doi:10.1073/pnas.181342398

    Article  ADS  Google Scholar 

  41. Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). doi:10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  42. Gray, H.B., Winkler, J.R.: Electron tunneling through proteins. Q. Rev. Biophys. 36, 341–372 (2003). doi:10.1017/S0033583503003913

    Article  Google Scholar 

  43. Dreyer, J.L.: Electron transfer in biological systems: an overview. Experientia 40, 653–675 (1984). doi:10.1007/BF01949719

    Article  Google Scholar 

  44. Marcus, R.A., Sutin, N.: Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985)

    Google Scholar 

  45. Canters, G.W., Dennison, C.: Biological electron transfer: structural and mechanistic studies. Biochimie 77, 506–515 (1995). doi:10.1016/0300-9084(96)88167-3

    Article  Google Scholar 

  46. Baum, R.M.: Views on biological, long-range electron transfer stir debate. Chem. Eng. News 22, 20–23 (1993)

    Google Scholar 

  47. Gray, H.B., Winkler, J.R.: Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996). doi:10.1146/annurev.bi.65.070196.002541

    Article  Google Scholar 

  48. Aubert, C., Vos, M.H., Mathis, P., Eker, A.P.M., Bretel, K.: Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 405, 586–590 (2000). doi:10.1038/35014644

    Article  ADS  Google Scholar 

  49. Wagenknecht, H.A., Stemp, E.D.A., Barton, J.K.: Evidence of electron transfer from peptides to DNA: oxidation of DNA-bound tryptophan using the flash-quench technique. J. Am. Chem. Soc. 122, 1–7 (2000). doi:10.1021/ja991855i

    Article  Google Scholar 

  50. Becker, J.S., Oliver, J.M., Berlin, R.D.: Fluorescence techniques for following interactions of microtubule subunits and membranes. Nature 254, 152–154 (1975). doi:10.1038/254152a0

    Article  ADS  Google Scholar 

  51. Ravelli, R.B., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., Knossow, M.: Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004). doi:10.1038/nature02393

    Article  ADS  Google Scholar 

  52. Eley, D.D.: Studies of organic semiconductors for 40 years—I. The mobile π-electron—40 years on. Mol. Cryst. Liq. Cryst. (Phila. Pa.) 171, 1–21 (1989). doi:10.1080/00268948908065783

    Article  Google Scholar 

  53. Johnson, E.A., Williams, H.T.: Quantum solutions for a symmetric double square well. Am. J. Phys. 50, 239–243 (1982). doi:10.1119/1.13046

    Article  ADS  Google Scholar 

  54. Hameroff, S.R., Tuszynski, J.A.: Search for quantum and classical modes of information processing in microtubules: implications for “the living state”. In: Musmeci, F., Ho, M. (eds.) Bioenergetic Organization in Living Systems. World Scientific, Singapore (2003)

    Google Scholar 

  55. Portet, S., Tuszynski, J.A., Hogue, C.W.V., Dixon, J.M.: Elastic vibrations in seamless microtubules. Eur. Biophys. J. 34, 912–920 (2005). doi:10.1007/s00249-005-0461-4

    Article  Google Scholar 

  56. Bartnik, E.A., Blinowska, K.J.: Stability of quantum capture in Langmuir–Blodgett monolayers against positional disorder. Phys. Lett. A 169, 46–50 (1992). doi:10.1016/0375-9601(92)90803-T

    Article  ADS  Google Scholar 

  57. Marder, M.P.: Condensed Matter Physics. Wiley, New York (2000)

    Google Scholar 

  58. Tuszynski, J.A., Jørgensen, M.F., Möbius, D.: Mechanisms of exciton energy transfer in Scheibe aggregates. Phys. Rev. E 59, 4374–4382 (1999). doi:10.1103/PhysRevE.59.4374

    Article  ADS  Google Scholar 

  59. Czikklely, V., Forsterling, H.D., Kuhn, H.: Extended dipole model for aggregates of dye molecules. Chem. Phys. Lett. 6, 207–210 (1970). doi:10.1016/0009-2614(70)80220-2

    Article  ADS  Google Scholar 

  60. Jackson, J.D.: Classical Electrodynamics, 3rd edn, p. 151. Wiley, New York (1999)

    MATH  Google Scholar 

  61. Schoutens, J.: Dipole–dipole interactions in microtubules. J. Biol. Phys. 31, 35–55 (2005). doi:10.1007/s10867-005-3886-1

    Article  Google Scholar 

  62. Jolley, L.B.W.: Summation of Series, 2nd revision. Dover, New York (1961)

    MATH  Google Scholar 

  63. Seife, C.: Cold numbers unmake the quantum mind. Science 287, 791 (2000). doi:10.1126/science.287.5454.791

    Article  Google Scholar 

  64. Koch, C., Hepp, K.: Quantum mechanics in the brain. Nature 440, 611 (2006). doi:10.1038/440611a

    Article  ADS  Google Scholar 

  65. Hameroff, S.: Consciousness, neurobiology and quantum mechanics: the case for a connection. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness, pp. 193–253. Springer, Berlin (2006)

    Chapter  Google Scholar 

  66. Hameroff, S., Nip, A., Porter, M., Tuszynski, J.: Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 64, 149–168 (2002). doi:10.1016/S0303-2647(01)00183-6

    Article  Google Scholar 

  67. Woutersen, S., Bakker, H.J.: Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999). doi:10.1038/990058

    Article  ADS  Google Scholar 

  68. Nielson, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  69. Long, Y., Abu-Irhayem, E., Kratz, H.-B.: Peptide electron transfer: more questions than answers. Chem. Eur. J. 11, 5186 (2005). doi:10.1002/chem.200500143

    Article  Google Scholar 

  70. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007). doi:10.1126/science.1137201

    Article  ADS  Google Scholar 

  71. Collini, E., Scholes, G.D.: Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369 (2009). doi:10.1126/science.1164016

    Article  ADS  Google Scholar 

  72. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007). doi:10.1038/nature05678

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from NSERC, Alberta Cancer Foundation and the Allard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Tuszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craddock, T.J.A., Tuszynski, J.A. A critical assessment of the information processing capabilities of neuronal microtubules using coherent excitations. J Biol Phys 36, 53–70 (2010). https://doi.org/10.1007/s10867-009-9158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9158-8

Keywords

Navigation