Skip to main content
Log in

Analysis of an N-terminal deletion in subunit a of the Escherichia coli ATP synthase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6–20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628. doi:10.1038/370621a0

    Article  CAS  Google Scholar 

  • Akiyama Y, Kihara A, Ito K (1996) Subunit a of proton ATPase Fo sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett 399:26–28

    Article  CAS  Google Scholar 

  • Allegretti M, Klusch N, Mills DJ, Vonck J, Kuhlbrandt W, Davies KM (2015) Horizontal membrane-intrinsic alpha-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:237–240. doi:10.1038/nature14185

    Article  CAS  Google Scholar 

  • Angevine CM, Fillingame RH (2003) Aqueous access channels in subunit a of rotary ATP synthase. J Biol Chem 278:6066–6074. doi:10.1074/jbc.M210199200

    Article  CAS  Google Scholar 

  • Angevine CM, Herold KA, Fillingame RH (2003) Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane. Proc Natl Acad Sci U S A 100:13179–13183. doi:10.1073/pnas.2234364100

    Article  CAS  Google Scholar 

  • Angevine CM, Herold KA, Vincent OD, Fillingame RH (2007) Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5. J Biol Chem 282:9001–9007. doi:10.1074/jbc.M610848200

    Article  CAS  Google Scholar 

  • Bae L, Vik SB (2009) A more robust version of the arginine 210-switched mutant in subunit a of the Escherichia coli ATP synthase. Biochim Biophys Acta 1787:1129–1134. doi:10.1016/j.bbabio.2009.03.022

    Article  CAS  Google Scholar 

  • Brockmann B, Koop Genannt Hoppmann KD, Strahl H, Deckers-Hebestreit G (2013) Time-delayed in vivo assembly of subunit a into preformed Escherichia coli FoF1 ATP synthase. J Bacteriol 195:4074–4084. doi:10.1128/JB.00468-13

    Article  CAS  Google Scholar 

  • Cain BD, Simoni RD (1988) Interaction between Glu-219 and his-245 within the a subunit of F1Fo-ATPase in Escherichia coli. J Biol Chem 263:6606–6612

    CAS  Google Scholar 

  • Chance B, Nishimura M (1967) Sensitive measurements of changes of hydrogen ion concentration. Methods Enzymol 10:641–650

    Article  CAS  Google Scholar 

  • Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707. doi:10.1038/nsmb.2058

    Article  CAS  Google Scholar 

  • DeLeon-Rangel J, Ishmukhametov RR, Jiang W, Fillingame RH, Vik SB (2013) Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking. FEBS Lett 587:892–897. doi:10.1016/j.febslet.2013.02.012

    Article  CAS  Google Scholar 

  • Dmitriev O, Jones PC, Jiang W, Fillingame RH (1999) Structure of the membrane domain of subunit b of the Escherichia coli F0F1 ATP synthase. J Biol Chem 274:15598–15604

    Article  CAS  Google Scholar 

  • Dong H, Fillingame RH (2010) Chemical reactivities of cysteine substitutions in subunit a of ATP synthase define residues gating H+ transport from each side of the membrane. J Biol Chem 285:39811–39818. doi:10.1074/jbc.M110.175844

    Article  CAS  Google Scholar 

  • Dunn SD, Tozer RG, Zadorozny VD (1990) Activation of Escherichia coli F1-ATPase by lauryldimethylamine oxide and ethylene glycol: relationship of ATPase activity to the interaction of the ε and β subunits. Biochemistry 29:4335–4340

    Article  CAS  Google Scholar 

  • Foster DL, Fillingame RH (1982) Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem 257:2009–2015

    CAS  Google Scholar 

  • Galkin MA, Ishmukhametov RR, Vik SB (2006) A functionally inactive, cold-stabilized form of the Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1757:206–214. doi:10.1016/j.bbabio.2006.02.011

    Article  CAS  Google Scholar 

  • Greie JC, Heitkamp T, Altendorf K (2004) The transmembrane domain of subunit b of the Escherichia coli F1Fo ATP synthase is sufficient for H + −translocating activity together with subunits a and c. Eur J Biochem 271:3036–3042. doi:10.1111/j.1432-1033.2004.04235.x

    Article  CAS  Google Scholar 

  • Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kuhlbrandt W, Meier T (2016) Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol Cell 63:445–456. doi:10.1016/j.molcel.2016.05.037

    Article  CAS  Google Scholar 

  • Hartzog PE, Cain BD (1993) Mutagenic analysis of the a subunit of the F1Fo ATP synthase in Escherichia coli: Gln-252 through Tyr-263. J Bacteriol 175:1337–1343

    Article  CAS  Google Scholar 

  • Hermolin J, Fillingame RH (1995) Assembly of Fo sector of Escherichia coli H+ ATP synthase. Interdependence of subunit insertion into the membrane J Biol Chem 270:2815–2817

    CAS  Google Scholar 

  • Humbert R, Brusilow WS, Gunsalus RP, Klionsky DJ, Simoni RD (1983) Escherichia coli Mutants defective in the uncH gene. J Bacteriol 153:416–422

    CAS  Google Scholar 

  • Ishmukhametov RR, Galkin MA, Vik SB (2005) Ultrafast purification and reconstitution of his-tagged cysteine-less Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1706:110–116. doi:10.1016/j.bbabio.2004.09.012

    Article  CAS  Google Scholar 

  • Ishmukhametov RR, Pond JB, Al-Huqail A, Galkin MA, Vik SB (2008) ATP synthesis without R210 of subunit a in the Escherichia coli ATP synthase. Biochim Biophys Acta 1777:32–38. doi:10.1016/j.bbabio.2007.11.004

    Article  CAS  Google Scholar 

  • Jans DA, Hatch L, Fimmel AL, Gibson F, Cox GB (1985) Complementation between uncF alleles affecting assembly of the F1Fo-ATPase complex of Escherichia coli. J Bacteriol 162:420–426

    CAS  Google Scholar 

  • Jiang W, Fillingame RH (1998) Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci U S A 95:6607–6612

    Article  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. doi:10.1006/jmbi.1999.3091

    Article  CAS  Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22:420–423

    Article  CAS  Google Scholar 

  • Junge W, Nelson N (2015) ATP synthase. Annu Rev Biochem 84:631–657. doi:10.1146/annurev-biochem-060614-034124

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. doi:10.1038/nprot.2015.053

    Article  CAS  Google Scholar 

  • Klionsky DJ, Brusilow WS, Simoni RD (1984) In vivo evidence for the role of the ε subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol 160:1055–1060

    CAS  Google Scholar 

  • Kol S, Majczak W, Heerlien R, van der Berg JP, Nouwen N, Driessen AJ (2009) Subunit a of the F1Fo ATP synthase requires YidC and SecYEG for membrane insertion. J Mol Biol 390:893–901. doi:10.1016/j.jmb.2009.05.074

    Article  CAS  Google Scholar 

  • Kumamoto CA, Simoni RD (1986) Genetic evidence for interaction between the a and b subunits of the Fo portion of the Escherichia coli proton translocating ATPase. J Biol Chem 261:10037–10042

    CAS  Google Scholar 

  • Lewis MJ, Simoni RD (1992) Deletions in hydrophilic domains of subunit a from the Escherichia coli F1Fo-ATP synthase interfere with membrane insertion or Fo assembly. J Biol Chem 267:3482–3489

    CAS  Google Scholar 

  • Long JC, DeLeon-Rangel J, Vik SB (2002) Characterization of the first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase by surface labeling, cross-linking, and mutagenesis. J Biol Chem 277:27288–27293. doi:10.1074/jbc.M202118200

    Article  CAS  Google Scholar 

  • Long JC, Wang S, Vik SB (1998) Membrane topology of subunit a of the F1Fo ATP synthase as determined by labeling of unique cysteine residues. J Biol Chem 273:16235–16240

    Article  CAS  Google Scholar 

  • Lötscher HR, deJong C, Capaldi RA (1984) Interconversion of high and low adenosinetriphosphatase activity forms of Escherichia coli F1 by the detergent lauryldimethylamine oxide. Biochemistry 23:4140–4143

    Article  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662. doi:10.1126/science.1111199

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor laboratory press. Cold Spring Harbor, New York

    Google Scholar 

  • Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH (2008) The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J Biol Chem 283:13044–13052. doi:10.1074/jbc.M800900200

    Article  CAS  Google Scholar 

  • Moore KJ, Fillingame RH (2008) Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J Biol Chem 283:31726–31735. doi:10.1074/jbc.M803848200

    Article  CAS  Google Scholar 

  • Morales-Rios E, Montgomery MG, Leslie AG, Walker JE (2015) Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 a resolution. Proc Natl Acad Sci U S A 112:13231–13236. doi:10.1073/pnas.1517542112

    Article  CAS  Google Scholar 

  • Motz C, Hornung T, Kersten M, McLachlin DT, Dunn SD, Wise JG, Vogel PD (2004) The subunit b dimer of the FoF1-ATP synthase: interaction with F1-ATPase as deduced by site-specific spin-labeling. J Biol Chem 279:49074–49081. doi:10.1074/jbc.M404543200

    Article  CAS  Google Scholar 

  • Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Q Rev Biophys 44:311–356. doi:10.1017/S0033583510000338

    Article  CAS  Google Scholar 

  • Ono S, Sone N, Yoshida M, Suzuki T (2004) ATP synthase that lacks Fo a-subunit: isolation, properties, and indication of Fo b 2-subunits as an anchor rail of a rotating c-ring. J Biol Chem 279:33409–33412. doi:10.1074/jbc.M404993200

    Article  CAS  Google Scholar 

  • Patterson AR, Wada T, Vik SB (1999) His15 of subunit a of the Escherichia coli ATP synthase is important for the structure or assembly of the membrane sector Fo. Arch Biochem Biophys 368:193–197. doi:10.1006/abbi.1999.1306

    Article  CAS  Google Scholar 

  • Peskova YB, Nakamoto RK (2000) Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and ε subunit on the catalytic transition state. Biochemistry 39:11830–11836

    Article  CAS  Google Scholar 

  • Pogoryelov D, Yildiz O, Faraldo-Gomez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073. doi:10.1038/nsmb.1678

    Article  CAS  Google Scholar 

  • Porter AC, Kumamoto C, Aldape K, Simoni RD (1985) Role of the b subunit of the Escherichia coli proton-translocating ATPase. A mutagenic analysis J Biol Chem 260:8182–8187

    CAS  Google Scholar 

  • Preiss L, Langer JD, Yildiz O, Eckhardt-Strelau L, Guillemont JE, Koul A, Meier T (2015) Structure of the mycobacterial ATP synthase F rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1:e1500106. doi:10.1126/sciadv.1500106

    Article  Google Scholar 

  • Shah NB, Duncan TM (2015) Aerobic growth of Escherichia coli is reduced, and ATP synthesis is selectively inhibited when five C-terminal residues are deleted from the subunit of ATP synthase. J Biol Chem 290:21032–21041. doi:10.1074/jbc.M115.665059

    Article  CAS  Google Scholar 

  • Steed PR, Fillingame RH (2008) Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1F0 ATP synthase. J Biol Chem 283:12365–12372. doi:10.1074/jbc.M800901200

    Article  CAS  Google Scholar 

  • Steed PR, Fillingame RH (2009) Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 284:23243–23250. doi:10.1074/jbc.M109.002501

    Article  CAS  Google Scholar 

  • Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gomez JD, Mueller DM (2012) Structure of the c10 ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19(485–491):S481. doi:10.1038/nsmb.2284

    Google Scholar 

  • Valiyaveetil FI, Fillingame RH (1997) On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli FoF1-ATP synthase. J Biol Chem 272:32635–32641

    Article  CAS  Google Scholar 

  • Valiyaveetil FI, Fillingame RH (1998) Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J Biol Chem 273:16241–16247

    Article  CAS  Google Scholar 

  • Vik SB (2007) ATP synthesis by oxidative phosphorylation. In: Böck A et al (eds) EcoSal—Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington D.C

    Google Scholar 

  • Vik SB, Antonio BJ (1994) A mechanism of proton translocation by F1Fo ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269:30364–30369

    CAS  Google Scholar 

  • Vik SB, Cain BD, Chun KT, Simoni RD (1988) Mutagenesis of the a subunit of the F1Fo-ATPase from Escherichia coli. Mutations at Glu-196, pro-190, and Ser-199. J Biol Chem 263:6599–6605

    CAS  Google Scholar 

  • Vik SB, Simoni RD (1987) F1Fo-ATPase from Escherichia coli with mutant Fo subunits. Partial purification and immunoprecipitation of F1Fo complexes. J Biol Chem 262:8340–8346

    CAS  Google Scholar 

  • von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1Fo ATP synthases. Annu Rev Biochem 78:649–672. doi:10.1146/annurev.biochem.78.081307.104803

    Article  Google Scholar 

  • Wada T, Long JC, Zhang D, Vik SB (1999) A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase. J Biol Chem 274:17353–17357

    Article  CAS  Google Scholar 

  • Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827. doi:10.1073/pnas.1011099107

    Article  CAS  Google Scholar 

  • Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE (2003) YidC is strictly required for membrane insertion of subunits a and c of the F1Fo ATP synthase and SecE of the SecYEG translocase. Biochemistry 42:10537–10544. doi:10.1021/bi034309h

    Article  CAS  Google Scholar 

  • Zhang D, Vik SB (2003a) Close proximity of a cytoplasmic loop of subunit a with c subunits of the ATP synthase from Escherichia coli. J Biol Chem 278:12319–12324. doi:10.1074/jbc.M212413200

    Article  CAS  Google Scholar 

  • Zhang D, Vik SB (2003b) Helix packing in subunit a of the Escherichia coli ATP synthase as determined by chemical labeling and proteolysis of the cysteine-substituted protein. Biochemistry 42:331–337. doi:10.1021/bi026649t

    Article  CAS  Google Scholar 

  • Zharova TV, Vinogradov AD (2006) Requirement of medium ADP for the steady-state hydrolysis of ATP by the proton-translocating Paracoccus denitrificans FoF1-ATP synthase. Biochim Biophys Acta 1757:304–310. doi:10.1016/j.bbabio.2006.03.001

    Article  CAS  Google Scholar 

  • Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL (2015) Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Elife 4:e10180. doi:10.7554/eLife.10180

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant R01GM40508 from the National Institutes of Health (USA). The authors thank SMU students Uju Rochas, Mai Bedair and Damilola Salako for constructing some of the plasmids necessary for the final experiments.

This work was supported by grants from the NIH (GM-40508) and the Welch Foundation (N-1378) to S.B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. Vik.

Additional information

While this manuscript was under review a new structure of the E. coli ATP synthase was reported: Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG. Elife. 2016 Dec 21;5. pii: e21598. doi:10.7554/eLife.21598

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishmukhametov, R.R., DeLeon-Rangel, J., Zhu, S. et al. Analysis of an N-terminal deletion in subunit a of the Escherichia coli ATP synthase. J Bioenerg Biomembr 49, 171–181 (2017). https://doi.org/10.1007/s10863-017-9694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9694-z

Keywords

Navigation