Skip to main content
Log in

The Synaptojanins in the murine small and large intestine

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The expression of the phosphoinositides phosphatases Synaptojanins (Synjs) 1 and 2 has been shown in brain and in some peripheral tissues, but their expression in the intestine has not been reported. Herein we show that the small and large intestine express Synj1 and Synj2. Their mRNA levels, measured by RT-PCR, are not affected by development in the small intestine but in the colon they increase with age. Immunostaining assays reveal that both Synjs localize at the apical domain of the epithelial cells and at the lamina propria at sites also expressing the neuron marker calretinin. Synj2 staining at the lamina propria is fainter than that of Synj1. In colonocytes Synjs are at the apical membrane and cytosolic membrane vesicles. Synj2 is also at the mitochondria. Western blots reveal that the intestinal mucosa expresses at least two Synj1 (170- and 139-kDa) and two Synj2 (160- and 148-kDa) isoforms. The observations suggest that Synj1–170, Synj2–160, and Synj2–148 in colonocytes, might participate in processes that take place mainly at the apical domain of the epithelial cells whereas Synj1–139 in those at the enteric nervous system. Experimental colitis augments the mRNA abundance of both Synjs in colon but only Synj2 mRNA levels are increased in colon tumors. In conclusion, as far as we know, this is the first report showing expression, location and isoforms of Synj1 and Synj2 in the small and large intestine and that they might participate in intestinal pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam MG, Berger C, Feldner A, Yang WJ, Wüstehube-Lausch J, Herberich SE, Pinder M, Gesierich S, Hammes HP, Augustin HG, Fischer A (2013) Synaptojanin-2 binding protein stabilizes the notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res 113:1206–1218

    Article  CAS  Google Scholar 

  • Ares GR, Ortiz PA (2012) Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs. J Biol Chem 287:37824–37834

    Article  CAS  Google Scholar 

  • Ben-Chetrit N, Chetrit D, Russell R, Körner C, Mancini M, Abdul-Hai A, Itkin T, Carvalho S, Cohen-Dvashi H, Koestler WJ, Shukla K, Lindzen M, Kedmi M, Lauriola M, Shulman Z, Barr H, Seger D, Ferraro DA, Pareja F, Gil-Henn H, Lapidot T, Alon R, Milanezi F, Symons M, Ben-Hamo R, Efroni S, Schmitt F, Wiemann S, Caldas C, Ehrlich M, Yarden Y (2015) Synaptojanin 2 is a druggable mediator of metastasis and the gene is over expressed and amplified in breast cancer. Sci Signal 8(360):ra7

    Article  Google Scholar 

  • Billcliff PG, Lowe M (2014) Inositol lipid phosphatases in membrane trafficking and human disease. Biochem J 461:159–175

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M (2004) Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res 64:8271–8275

    Article  CAS  Google Scholar 

  • Chuang Y, Xu X, Kwiatkowska A, Tsapraillis G, Hwang H, Petritis K, Flynn D, Symons M (2012) Regulation of synaptojanin 2 5'-phosphatase activity by Src. Cell Adhes Migr 6:518–525

    Article  Google Scholar 

  • Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig 69:238–249

    CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  CAS  Google Scholar 

  • Drouet V, Lesage S (2014) Synaptojanin 1 mutation in Parkinson's disease brings further insight into the neuropathological mechanisms. Biomed Res Int 2014(289728):1–9

    Article  Google Scholar 

  • Du Q, Guo X, Zhang X, Zhou W, Liu Z, Wang J, Zhang T, Mao Z, Luo J, Jin T, Liu C (2015) SYNJ2 variant rs9365723 is associated with colorectal cancer risk in Chinese Han population. Int J Biol Markers 28 31(2):e138–e143. doi:10.5301/jbm.5000182

    Google Scholar 

  • Fujita M, Baba R, Shimamoto M, Sakuma Y, Fujimoto S (2007) Molecular morphology of the digestive tract; macromolecules and food allergens are transferred intact across the intestinal absorptive cells during the neonatal suckling period. Med Mol Morphol 40:1–7

    Article  CAS  Google Scholar 

  • Garcia-Miranda P, Peral MJ, Ilundain AA (2010) Rat small intestine expresses the reelin-disabled-1 signalling pathway. Exp Physiol 95:498–507

    Article  CAS  Google Scholar 

  • García-Miranda P, Vázquez-Carretero MD, Sesma P, Peral MJ, Ilundain AA (2013) Reelin is involved in the crypt-villus unit homeostasis. Tissue Eng Part A 19:188–198. doi:10.1089/ten.TEA.2012.0050

    Article  Google Scholar 

  • Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275:25616–25624

    Article  CAS  Google Scholar 

  • Haffner C, Takei K, Chen H, Ringstad N, Hudson A, Butler MH, Salcini AE, Di Fiore PP, De Camilli P (1997) Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett 419:175–180

    Article  CAS  Google Scholar 

  • Haffner C, Di Paolo G, Rosenthal JA, de Camilli P (2000) Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Curr Biol 10:471–474

    Article  CAS  Google Scholar 

  • Hill E, van Der Kaay J, Downes CP, Smythe E (2001) The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 152:309–323

    Article  CAS  Google Scholar 

  • Khvotchev M, Südhof TC (1998) Developmentally regulated alternative splicing in a novel synaptojanin. J Biol Chem 273:2306–2311

    Article  CAS  Google Scholar 

  • Lim LC, Looi ML, Syed Zakaria SZ, Sagap I, Rose IM, Chin SF, Jamal R (2015) Identification of differentially expressed proteins in the serum of colorectal cancer patients using 2D-DIGE proteomics analysis. Pathol Oncol Res 22:169–177

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative Gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, Symons M (2000) Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol 10:1383–1386

    Article  CAS  Google Scholar 

  • Manji SS, Williams LH, Miller KA, Ooms LM, Bahlo M, Mitchell CA, Dahl HH (2011) A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One 6:e17607

    Article  CAS  Google Scholar 

  • Matsuzaki T, Hanai S, Kishi H, Liu Z, Bao Y, Kikuchi A, Tsuchida K, Sugino H (2002) Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent pathway. J Biol Chem 277:19008–19018

    Article  CAS  Google Scholar 

  • McPherson PS, Takei K, Schmid SL, De Camilli P (1994) P145, a major Grb2-binding protein in brain, is colocalized with dynamin in nerve terminals where it undergoes activity dependent dephosphorylation. J Biol Chem 269:30132–30139

    CAS  Google Scholar 

  • McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357

    Article  CAS  Google Scholar 

  • Nemoto Y, De Camilli P (1999) Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J 18:2991–3006

    Article  CAS  Google Scholar 

  • Nemoto Y, Arribas M, Haffner C, De Camilli P (1997) Synaptojanin 2, a novel synaptojanin isoform with a distinct targeting domain and expression pattern. J Biol Chem 272:30817–30821

    Article  CAS  Google Scholar 

  • Nemoto Y, Wenk MR, Watanabe M, Daniell L, Murakami T, Ringstad N, Yamada H, Takei K, De Camilli P (2001) Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem 276:41133–41142

    Article  CAS  Google Scholar 

  • Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92

    Article  CAS  Google Scholar 

  • Planchart A (2013) Analysis of an intronic promoter within Synj2. Biochem Biophys Res Commun 440:640–645

    Article  CAS  Google Scholar 

  • Ramjaun AR, McPherson PS (1996) Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem 271:24856–24861

    Article  CAS  Google Scholar 

  • Rusk N, Le PU, Mariggio S, Guay G, Lurisci C, Nabi IR, Corda D, Symons M (2003) Synaptojanin 2 functions at early step of clathrin-mediated endocitosis. Curr Biol 13:659–663

    Article  CAS  Google Scholar 

  • Seet LF, Cho S, Hessel A, Dumont DJ (1998) Molecular cloning of multiple isoforms of synaptojanin 2 and assignment of the gene to mouse chromosome 17A2-3.1. Biochem Biophys Res Commun 247:116–122

    Article  CAS  Google Scholar 

  • Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S, Volpicelli-Daley L, Tian X, Wu Y, Ma H, Son SH, Zheng R, Moeckel G, Cremona O, Holzman LB, De Camilli P, Ishibe S (2012) Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 122:4401–4411

    Article  CAS  Google Scholar 

  • Vázquez-Carretero MD, García-Miranda P, Calonge ML, Calvo E, Lopez JA, Romero F, Ilundain AA, Peral MJ (2012) Disabled-1 protein in the intestine. Genes Nutr 6:S75 (meeting abstract)

    Google Scholar 

  • Vázquez-Carretero MD, Palomo M, Carvajal AE, Serrano-Morales JM, Calonge ML, Ilundain AA, Peral MJ (2014) Synaptojanins expression in the small and large intestine. Acta Physiol 212(698):90 (meeting abstract)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Junta de Andalucía (CTS 05884). Electron microscope images were obtained at the Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Peral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Carretero, M.D., Carvajal, A.E., Serrano-Morales, J.M. et al. The Synaptojanins in the murine small and large intestine. J Bioenerg Biomembr 48, 569–579 (2016). https://doi.org/10.1007/s10863-016-9689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9689-1

Keywords

Navigation