Skip to main content
Log in

Role of mitochondrial complex I and protective effect of CoQ10 supplementation in propofol induced cytotoxicity

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Propofol (2,6-diisopropylphenol) is an anaesthetic widely used for human sedation. Due to its intrinsic antioxidant properties, rapid induction of anaesthesia and fast recovery, it is employed in paediatric anaesthesia and in the intensive care of premature infants. Recent studies have pointed out that exposure to anaesthesia in the early stage of life might be responsible of long-lasting cognitive impairment. The apoptotic neurodegeneration induced by general anaesthetics (GA) involves mitochondrial impairment due to the inhibition of the OXPHOS machinery. In the present work, we aim to identify the main mitochondrial respiratory chain target of propofol toxicity and to evaluate the possible protective effect of CoQ10 supplementation. The propofol effect on the mitochondrial functionality was assayed in isolated mitochondria and in two cell lines (HeLa and T67) by measuring oxygen consumption rate. The protective effect of CoQ10 was assessed by measuring cells viability, NADH-oxidase activity and ATP/ADP ratio in cells treated with propofol. Our results show that propofol reduces cellular oxygen consumption rate acting mainly on mitochondrial Complex I. The kinetic analysis of Complex I inhibition indicates that propofol interferes with the Q module acting as a non-competitive inhibitor with higher affinity for the free form of the enzyme. Cells supplemented with CoQ10 are more resistant to propofol toxicity. Propofol exposure induces cellular damages due to mitochondrial impairment. The site of propofol inhibition on Complex I is the Q module. CoQ10 supplementation protects cells against the loss of energy suggesting its possible therapeutic role to minimizing the detrimental effects of general anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

mPTP:

Mitochondrial permeability transition pore

GA:

General anaesthetics

PRIS:

Propofol infusion Syndrome

CoQ1 :

2,3-Dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone

DB:

2,3-Dimethoxy-5-methyl--6-decyl-1,4-benzoquinone, oxidized form

DBH2:

2,3-Dimethoxy-5-methyl--6-decyl-1,4-benzoquinol, reduced form

DCIP:

2,6-Dichlorophenolindophenol

ETC:

Electron Transfer Chain

BHM:

Bovine Heart Mitochondria

TMPD:

N,N,N′,N′-Tetramethyl-p-phenylenediamine

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

FMN:

Flavin mononucleotide

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

TMRE:

Tetramethylrhodamine ethyl ester

ECAR:

Extracellular acidification rate

OCR:

Oxygen consumption rate

OXPHOS:

Oxidative phosphorylation

References

  • Apfelbaum JL, Grasela TH, Hug CC Jr, et al. (1993) The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: characteristics associated with prolonged time to awakening. Anesth Analg 77:S10–S14

  • Bercker S, Bert B, Bittigau P, et al. (2009) Neurodegeneration in newborn rats following propofol and Sevoflurane anesthesia. Neurotox Res 16:140–147. doi:10.1007/s12640-009-9063-8

    Article  CAS  Google Scholar 

  • Bergamini C, Moruzzi N, Sblendido A, et al. (2012) A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells. PLoS One 7:1–11. doi:10.1371/journal.pone.0033712

    Article  Google Scholar 

  • Block RI, Thomas JJ, Bayman EO, et al. (2012) Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology 117:494–503. doi:10.1097/ALN.0b013e3182644684

    Article  Google Scholar 

  • Boscolo A, Starr JA, Sanchez V, et al. (2012) The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: the importance of free oxygen radicals and mitochondrial integrity. Neurobiol Dis 45:1031–1041. doi:10.1016/j.nbd.2011.12.022

    Article  CAS  Google Scholar 

  • Branca D, Vincenti E, Scutari G (1995) Influence of the anesthetic 2,6-diisopropylphenol (propofol) on isolated rat heart mitochondria. Comp Biochem Physiol Part C Comp 110:41–45. doi:10.1016/0742-8413(94)00078-O

    CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I. Annu Rev Biochem 75:69–92. doi:10.1146/annurev.biochem.75.103004.142539

    Article  CAS  Google Scholar 

  • Cattano D, Young C, Straiko MMW, Olney JW (2008) Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg 106:1712–1714. doi:10.1213/ane.0b013e318172ba0a

    Article  CAS  Google Scholar 

  • Cremona T, Kearney EB (1964) Studies on the respiratory chain-linked reduced Nicotinamide adenine dinucleotide dehydrogenase: VI. Further purification and properties of the enzyme from beef heart. J Biol Chem 239:2328–2334

    CAS  Google Scholar 

  • Degli Esposti M, Ghelli A, Ratta M, et al. (1994) Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochem J 301(Pt 1):161–167. doi:10.1016/j.bmcl.2003.11.021

    Article  CAS  Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83. doi:10.1016/0378-3782(79)90022-7

    Article  CAS  Google Scholar 

  • Driessen J, Willems S, Dercksen S, et al. (2007) Anesthesia-related morbidity and mortality after surgery for muscle biopsy in children with mitochondrial defects. Paediatr Anaesth 17:16–21. doi:10.1111/j.1460-9592.2006.02043.x

    Article  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods Enzymol 10:41–47. doi:10.1016/0076-6879(67)10010-4

    Article  CAS  Google Scholar 

  • Estornell E, Fato R, Castelluccio C, et al. (1992) Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. FEBS Lett 311:107–109. doi:10.1016/0014-5793(92)81378-Y

    Article  CAS  Google Scholar 

  • Estornell E, Fato R, Pallotti F, Lenaz G (1993) Assay conditions for the mitochondrial NADH:coenzyme Q oxidoreductase. FEBS Lett 332:127–131. doi:10.1016/0014-5793(93)80498-J

    Article  CAS  Google Scholar 

  • Fato R, Estornell E, Di Bernardo S, et al. (1996) Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 35:2705–2716. doi:10.1021/bi9516034

    Article  CAS  Google Scholar 

  • Fato R, Bergamini C, Bortolus M, et al. (2009) Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787:384–392. doi:10.1016/j.bbabio.2008.11.003

    Article  CAS  Google Scholar 

  • Fetoni AR, De Bartolo P, Eramo SLM, et al. (2013) Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense. J Neurosci 33:4011–4023. doi:10.1523/JNEUROSCI.2282-12.2013

    Article  CAS  Google Scholar 

  • Fodale V, La Monaca E (2008) Propofol infusion syndrome: an overview of a perplexing disease. Drug Saf 31:293–303

    Article  CAS  Google Scholar 

  • Fredriksson A, Archer T, Alm H, et al. (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–376. doi:10.1016/j.bbr.2003.12.026

    Article  CAS  Google Scholar 

  • Fredriksson A, Pontén E, Gordh T, Eriksson P (2007) Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type a receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107:427–436. doi:10.1097/01.aoa.0000308309.23565.70

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Haase R, Sauer H, Eichler G (2005) Lactic acidosis following short-term propofol infusion may be an early warning of propofol infusion syndrome. J Neurosurg Anesthesiol 17:122–123

    Article  Google Scholar 

  • Istaphanous GK, Loepke AW (2009) General anesthetics and the developing brain. Curr Opin Anaesthesiol 22:368–373. doi:10.1097/ACO.0b013e3283294c9e

    Article  Google Scholar 

  • Javadov SA, Lim KH, Kerr PM, et al. (2000) Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 45:360–369

    Article  CAS  Google Scholar 

  • Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882. doi:10.1097/00008506-200307000-00029

    CAS  Google Scholar 

  • Jones D (1981) Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr 225:446–449

    Article  CAS  Google Scholar 

  • Kahraman S, Zup SL, McCarthy MM, Fiskum G (2008) GABAergic mechanism of propofol toxicity in immature neurons. J Neurosurg Anesthesiol 20:233–240. doi:10.1097/ANA.0b013e31817ec34d

    Article  Google Scholar 

  • Koch M, De Backer D, Vincent J (2004) Lactic acidosis: an early marker of propofol infusion syndrome? Intensive Care Med 30:522

    Article  Google Scholar 

  • Lauro GM, Di Lorenzo N, Grossi M, et al. (1986) Prostaglandin E2 as an immunomodulating factor released in vitro by human glioma cells. Acta Neuropathol 69:278–282. doi:10.1007/BF00688305

    Article  CAS  Google Scholar 

  • Leskovac V (2003) Comprehensive enzyme kinetics. Publisher Springer US, Copyright Springer Science+Business Media, New York

    Google Scholar 

  • Marian M, Parrino C, Leo AM, et al. (1997) Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res 22:287–292. doi:10.1023/A:1022438805337

    Article  CAS  Google Scholar 

  • Pallotti F, Lenaz G (2007) Isolation and Subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol 80:3–44

    Article  CAS  Google Scholar 

  • Parke TJ, Stevens JE, Rice AS, et al. (1992) Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ 305:613–616. doi:10.1136/bmj.305.6854.613

    Article  CAS  Google Scholar 

  • Paule MG, Li M, Allen RR, et al. (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33:220–230. doi:10.1016/j.ntt.2011.01.001

    Article  CAS  Google Scholar 

  • Pearn ML, Fellow Postdoctoral, Hu Y, et al. (2012) Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 116:352–361. doi:10.1097/ALN.0b013e318242a48c

    Article  CAS  Google Scholar 

  • Schenkman KA, Yan SL (2000) Propofol impairment of mitochondrial respiration in isolated perfused Guinea pig hearts determined by reflectance spectroscopy. Crit Care Med 28:172–177. doi:10.1097/00003246-200001000-00028

    Article  CAS  Google Scholar 

  • Schwartz D, Raghunathan K (2009) Anesthesia and mitochondrial disorders. Paediatr Anaesth 19:60–61

    Google Scholar 

  • Sebel P, Lowdon J (1989) Propofol: a new intravenous anesthetic. Anesthesiology 71:260–277

    Article  CAS  Google Scholar 

  • Smith AL (1967) 13] preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small-scale. Methods Enzymol 10:81–86. doi:10.1016/0076-6879(67)10016-5

    Article  CAS  Google Scholar 

  • Smith S, Cottingham I, Ragan C (1980) Immunological assays of the NADH dehydrogenase content of bovine heart mitochondria and submitochondrial particles. FEBS Lett 110:279–282

    Article  CAS  Google Scholar 

  • Stratmann G (2011) Neurotoxicity of anesthetic drugs in the developing brain. Anesth Analg 113:1170–1179

    Article  CAS  Google Scholar 

  • Sztark F, Ichas F, Ouhabi R, et al. (1995) Effects of the anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: direct pore inhibition and shift of the gating potential. FEBS Lett 368:101–104. doi:10.1016/0014-5793(95)00610-L

    Article  CAS  Google Scholar 

  • Takada M, Ikenoya S, Yuzuriha T, Katayama K (1984) Simultaneous determination of reduced and oxidized ubiquinones. Methods Enzymol 105:147–155

    Article  CAS  Google Scholar 

  • Twaroski DM, Yan Y, Zaja I, et al. (2015) Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell–derived neurons. Anesthesiology 123:1067–1083. doi:10.1097/ALN.0000000000000857

    Article  CAS  Google Scholar 

  • Vanlander AV, Okun JG, de Jaeger A, Smet J, De Latter E, et al. (2015) Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q. Anesthesiology 122:343–352

    Article  CAS  Google Scholar 

  • Wilder RT, Flick RP, Sprung J, et al. (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804. doi:10.1097/01.anes.0000344728.34332.5d

    Article  Google Scholar 

  • Wolf A, Weir P, Segar P, et al. (2001) Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 357:606–607. doi:10.1016/S0140-6736(00)04064-2

    Article  CAS  Google Scholar 

  • Wu, GJ, Tai YT, Chen TL, et al (2005) Propofol specifically inhibits mitochondrial membrane potential but not complex I NADH dehydrogenase activity, thus reducing cellular ATP biosynthesis and migration of macrophages. Ann N Y Acad Sci 168–176

  • Zou W-W, Xiao H-P, M-N G, et al. (2013) Propofol induces rat embryonic neural stem cell apoptosis by activating both extrinsic and intrinsic pathways. Mol Med Rep 7:1123–1128. doi:10.3892/mmr.2013.1298

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Giorgio Lenaz M.D., Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy, for the stimulating discussions and for the critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romana Fato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Author contributions

C.B., N.M., F.V., and L.F. performed experiments, C.B., M.C.M. and R.F. conceived ideas, designed experiments, analysed results. C.B., N.M., J.G. and R.F. wrote the manuscript. All authors edited and reviewed the final manuscript.

Electronic supplementary material

ESM 1

(DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamini, C., Moruzzi, N., Volta, F. et al. Role of mitochondrial complex I and protective effect of CoQ10 supplementation in propofol induced cytotoxicity. J Bioenerg Biomembr 48, 413–423 (2016). https://doi.org/10.1007/s10863-016-9673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9673-9

Keywords

Navigation