Skip to main content

Advertisement

Log in

P2X7 receptor as a novel drug delivery system to increase the entrance of hydrophilic drugs into cells during photodynamic therapy

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The second-generation photosensitizer methylene blue (MB) exhibits photochemical and photophysical properties suitable for photodynamic therapy (PDT)-based cancer treatment. However, the clinical application of MB is limited because of its high hydrophilicity, which hinders its penetration into tumor tissues. Therefore, new methods to improve the entry of MB into the cytoplasm of target cells are necessary. Because MB has a mass of 319 Da, transient pores on the plasma membrane, such as the pore induced by the P2X7 receptor (P2X7R) that allows the passage of molecules up to 900 Da, could be used. Using MTT viability assays, flow cytometry experiments, and fluorescence microscopy, we evaluated the toxicity and phototoxicity of MB and potentiation effects of ATP and MB on cell death processes in the J774 cell line (via a P2X7-associated pore). We observed that treatment with 5 μM MB for 15 min promoted the rate of entry of MB into the cytoplasm to 4.7 %. However, treatment with 5 μM MB and 1 mM ATP for the same amount of time increased this rate to 90.2 %. However, this effect was inhibited by pretreatment with a P2X7 antagonist. We used peritoneal macrophages and a cell line that does not express P2X7R as controls. These cells were more resistant to PDT with MB under the same experimental conditions. Taken together, these results suggest the use of the pore associated with P2X7R as a drug delivery system to increase the passage of hydrophilic drugs into cells that express this receptor, thus facilitating PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PDT:

Photodynamic Therapy

P2X7R:

P2X7 receptor

MB:

Methylene Blue

PI:

Propidium iodide

BBG:

Brilliant Blue G

DMEM:

Dulbecco’s Modified Eagle Medium

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    Article  Google Scholar 

  • Agteresch HJDP, Rietveld T, van den Berg JW, Danser AH, Wilson JH (2000) Pharmacokinetics of intravenous ATP in cancer patients. Eur J Clin Pharmacol 56(1):49–55

    Article  CAS  Google Scholar 

  • Arbeloa J, Perez-Samartin A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45(3):954–961

    Article  CAS  Google Scholar 

  • Baoutina A, Dean RT, Jessup W (2001) Trans-plasma membrane electron transport induces macrophage-mediated low density lipoprotein oxidation. FASEB J 15(9):1580–1582

    CAS  Google Scholar 

  • Beijer S GE, Hupperets PS, van den Borne BEEM, van den Beuken-van Everdingen M, Nijziel MR, et al. Intravenous ATP infusions can be safely administered in the home setting: a study in pre-terminal cancer patients Intravenous ATP infusions can be safely administered in the home setting: a study in pre-terminal cancer patients. 2007;25(6):571–9.

  • Bellin JSMS, Oster G (1961) Dye-sensitized photoinactivation of tumor cells in vitro. Cancer Res 21:1365–1371

    CAS  Google Scholar 

  • Biel MA (1996) Photodynamic therapy and the treatment of head and neck cancers. J Clin Laser Med Surg 14(5):239–244

    CAS  Google Scholar 

  • Biel MA (1998) Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope 108(9):1259–1268

    Article  CAS  Google Scholar 

  • Biel MA (2010) Photodynamic therapy of head and neck cancers. Methods Mol Biol 635:281–293

    Article  Google Scholar 

  • Blazquez-Castro A, Stockert JC, Sanz-Rodriguez F, Zamarron A, Juarranz A (2009) Differential photodynamic response of cultured cells to methylene blue and toluidine blue: role of dark redox processes. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 8(3):371–376

    Article  CAS  Google Scholar 

  • Boehncke WHRA, Naumann J, Sterry W, Kaufmann R (1996) Comparison of sensitivity towards photodynamic therapy of cutaneous resident and infiltrating cell types in vitro. Lasers Surg Med 19(4):451–457

    Article  CAS  Google Scholar 

  • Bredell MG, Besic E, Maake C, Walt H (2010) The application and challenges of clinical PD-PDT in the head and neck region: a short review. J Photochem Photobiol B 101(3):185–190

    Article  CAS  Google Scholar 

  • Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. The Lancet Oncology 5(8):497–508

    Article  CAS  Google Scholar 

  • Buchholz K, Schirmer RH, Eubel JK, Akoachere MB, Dandekar T, Becker K, et al. (2008) Interactions of methylene blue with human disulfide reductases and their orthologues from plasmodium falciparum. Antimicrob Agents Chemother 52(1):183–191

    Article  CAS  Google Scholar 

  • Canto MISS, Petras RE, Blades E, Chak A, Sivak MV Jr (1996) Methylene blue selectively stains intestinal metaplasia in Barrett’s esophagus. Gastrointest Endosc 44(1):1–7

  • Chen Y, Zheng W, Li Y, Zhong J, Ji J, Shen P (2008) Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci 99(10):2019–2027

    CAS  Google Scholar 

  • Chiozzi P, Murgia M, Falzoni S, Ferrari D, Di Virgilio F (1996) Role of the purinergic P2Z receptor in spontaneous cell death in J774 macrophage cultures. Biochem Biophys Res Commun 218(1):176–181

    Article  CAS  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446

    Article  CAS  Google Scholar 

  • Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T (2003) Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 278(33):30732–30740

    Article  CAS  Google Scholar 

  • Constantinescu P, Wang B, Kovacevic K, Jalilian I, Bosman GJ, Wiley JS, et al. (2010) P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. Biochim Biophys Acta 1798(9):1797–1804

    Article  CAS  Google Scholar 

  • Coolen EJAI, Bekers O, Vervaet C, Bast A, Dagnelie PC (2011) Oral bioavailability of ATP after prolonged administration. Br J Nutr 105(3):357–366

    Article  CAS  Google Scholar 

  • Coutinho-Silva R, Persechini PM (1997) P2Z purinoceptor-associated pores induced by extracellular ATP in macrophages and J774 cells. Am J Phys 273(6 Pt 1):C1793–CC800

    CAS  Google Scholar 

  • Coutinho-Silva R, Perfettini JL, Persechini PM, Dautry-Varsat A, Ojcius DM (2001) Modulation of P2Z/P2X(7) receptor activity in macrophages infected with chlamydia psittaci. Am J Phys Cell Phys 280(1):C81–C89

    CAS  Google Scholar 

  • Demidova TN, Hamblin MR (2004) Macrophage-targeted photodynamic therapy. Int J Immunopathol Pharmacol 17(2):117–126

    CAS  Google Scholar 

  • Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447

    Article  Google Scholar 

  • Di Virgilio FFD, Falzoni S, Chiozzi P, Munerati M, Steinberg TH, Baricordi OR (1996) P2 purinoceptors in the immune system. CIBA Found Symp 198:290–302

    Google Scholar 

  • Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, et al. (1998) Cytolytic P2X purinoceptors. Cell DeathDiffer 5(3):191–199

    Google Scholar 

  • Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 5(2):251–256

    Article  Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  Google Scholar 

  • el-Sharabasy MM, el-Waseef AM, Hafez MM, Salim SA (1992) Porphyrin metabolism in some malignant diseases. Br J Cancer 65(3):409–412

    Article  CAS  Google Scholar 

  • Fadel MSM, Samy N, Mona S (2009) Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris. Journal of drugs in dermatology 8(11):983–990

    Google Scholar 

  • Garbayo EGJ, de Yebenes MG, Pelacho B, Abizanda G, Lana H, Blanco-Prieto MJ, Prosper F (2016) Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci Report 17(6):25932

    Article  Google Scholar 

  • Gill WBHJ, Lyon ES, Bagley DH, Schoenberg HW, Straus FH (1984) Selective surface staining of bladder tumors by intravesical methylene blue with enhanced endoscopic identification. Cancer 53(12):2724–2727

    Article  CAS  Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47(2):331–385

    CAS  Google Scholar 

  • Hamblin MR, Miller JL, Rizvi I, Ortel B (2002) Degree of substitution of chlorin e6 on charged poly-L-lysine chains affects their cellular uptake, localization and phototoxicity towards macrophages and cancer cells. Journal of X-ray science and technology 10(3):139–152

    CAS  Google Scholar 

  • Hechler B, Gachet C (2011) P2 receptors and platelet function. Purinergic Signal 7(3):293–303

    Article  CAS  Google Scholar 

  • Henderson BW, Gollnick SO, Snyder JW, Busch TM, Kousis PC, Cheney RT, et al. (2004) Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res 64(6):2120–2126

    Article  CAS  Google Scholar 

  • Hickman SE, el Khoury J, Greenberg S, Schieren I, Silverstein SC (1994) P2Z adenosine triphosphate receptor activity in cultured human monocyte-derived macrophages. Blood 84(8):2452–2456

    CAS  Google Scholar 

  • Hollo Z, Homolya L, Davis CW, Sarkadi B (1994) Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim Biophys Acta 1191(2):384–388

    Article  CAS  Google Scholar 

  • Huang Z (2005) A review of progress in clinical photodynamic therapy. Technology in cancer research & treatment 4(3):283–293

    Article  CAS  Google Scholar 

  • Jerjes W, Upile T, Akram S, Hopper C (2010) The surgical palliation of advanced head and neck cancer using photodynamic therapy. Clin Oncol (R Coll Radiol) 22(9):785–791

    Article  CAS  Google Scholar 

  • Khan S, Alam F, Azam A, Khan AU (2012) Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine 7:3245–3257

    Article  CAS  Google Scholar 

  • Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43(7):755–767

    Article  Google Scholar 

  • Kratzsch TSM, Reck T, Hildebrandt G, Hoederath P (2015) Catheter-tip granulomas associated with intrathecal drug delivery--a two-center experience identifying 13 cases. Pain Physician 18(5):E831–E840

    Google Scholar 

  • Kübler AC (2005) Photodynamic therapy. Med Laser Appl 20(1):37–45

    Article  Google Scholar 

  • Labanauskiene J, Satkauskas S, Kirveliene V, Venslauskas M, Atkocius V, Didziapetriene J (2009) Enhancement of photodynamic tumor therapy effectiveness by electroporation in vitro. Medicina (Kaunas) 45(5):372–377

    Google Scholar 

  • Link EMCR (1992) 211At-methylene blue for targeted radiotherapy of human melanoma xenografts: treatment of cutaneous tumors and lymph node metastases. Cancer Res 52(16):4385–4390

    CAS  Google Scholar 

  • Lipson RL, Baldes EJ, Olsen AM (1961) Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. J Thorac Cardiovasc Surg 42:623–629

    CAS  Google Scholar 

  • Lister MF, Sharkey J, Sawatzky Da, Hodgkiss JP, Davidson DJ, Rossi AG, et al. The role of the purinergic P2X7 receptor in inflammation. Journal of inflammation (London, England). 2007;4:5-.

  • Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Solbiati L, Gazelle GS (1999) Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 210(3):655–661

    Article  CAS  Google Scholar 

  • Lu Y, Jiao R, Chen X, Zhong J, Ji J, Shen P (2008) Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. J Cell Biochem 105(6):1451–1460

    Article  CAS  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232

    Article  CAS  Google Scholar 

  • May JM, Qu ZC, Whitesell RR (2003) Generation of oxidant stress in cultured endothelial cells by methylene blue: protective effects of glucose and ascorbic acid. Biochem Pharmacol 66(5):777–784

    Article  CAS  Google Scholar 

  • Merker MP, Bongard RD, Linehan JH, Okamoto Y, Vyprachticky D, Brantmeier BM, et al. (1997) Pulmonary endothelial thiazine uptake: separation of cell surface reduction from intracellular reoxidation. Am J Phys 272(4 Pt 1):L673–L680

    CAS  Google Scholar 

  • Morales TGBA, Camargo E, Johnson C, Sampliner RE (1998) Methylene blue staining for intestinal metaplasia of the gastric cardia with follow-up for dysplasia. Gastrointest Endosc 48(1):26–31

    Article  CAS  Google Scholar 

  • Morton CA (2002) Realizing the cosmetic potential of topical photodynamic therapy. J Cosmet Dermatol 1(2):66–71

    Article  CAS  Google Scholar 

  • Möser GHSJ, Deussen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Physiol 256(4 Pt1):C799–C806

    Google Scholar 

  • Mroz, PY, A.; Kharkwal, G.B.; Hamblin, M.R. Cell death pathways in photodynamic therapy of cancer. Cancer 2011;3:2516–2539.

  • Murgia M, Pizzo P, Steinberg TH, Di Virgilio F (1992) Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages. Biochem J 288(Pt 3):897–901

    Article  CAS  Google Scholar 

  • Murgia M, Hanau S, Pizzo P, Rippa M, Di VF (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268(11):8199–8203

    CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

    Article  CAS  Google Scholar 

  • Ohlendorff SD, Tofteng CL, Jensen JE, Petersen S, Civitelli R, Fenger M, et al. (2007) Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet Genomics 17(7):555–567

    Article  CAS  Google Scholar 

  • OhUigin C, McConnell DJ, Kelly JM, van der Putten WJ (1987) Methylene blue photosensitised strand cleavage of DNA: effects of dye binding and oxygen. Nucleic Acids Res 15(18):7411–7427

    Article  CAS  Google Scholar 

  • Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS (2011) Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med 51(4):824–833

    Article  CAS  Google Scholar 

  • Olson LE, Merker MP, Patel MK, Bongard RD, Daum JM, Johns RA, et al. (2000) Cyanide increases reduction but decreases sequestration of methylene blue by endothelial cells. Ann Biomed Eng 28(1):85–93

    Article  CAS  Google Scholar 

  • Orth KRA, Stanescu A, Beger HG (1995) Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue. Lancet 345:519–520

    Article  CAS  Google Scholar 

  • Orth KBG, Genze F, Rück A (2000) Methylene blue mediated photodynamic therapy in experimental colorectal tumors in mice. J Photochem Photobiol B Biol 57(2–3):186–192

    Article  CAS  Google Scholar 

  • Perni SPC, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, et al. (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30(1):89–93

    Article  CAS  Google Scholar 

  • Peter C, Hongwan D, Kupfer A, Lauterburg BH (2000) Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol 56(3):247–250

    Article  CAS  Google Scholar 

  • Phillips D (2011) Toward targeted photodynamic therapy. Pure Appl Chem 83(4):733–748

    Article  CAS  Google Scholar 

  • Qin MHH, Kim G, Nie G, Lee YE, Kopelman R (2011) Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci 10(5):832–841

    Article  CAS  Google Scholar 

  • Raffaghello L, Chiozzi P, Falzoni S, Di VF, Pistoia V (2006) The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Res 66(2):907–914

    Article  CAS  Google Scholar 

  • Ralph P, Prichard J, Cohn M (1975) Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol 114(2 pt 2):898–905

    CAS  Google Scholar 

  • Rapaport EFJ (1989) Generation of extracellular ATP in blood and its mediated inhibition of host weight loss in tumor-bearing mice. Biochem Pharmacol 38(23):4261–4266

    Article  CAS  Google Scholar 

  • Ren S, Zhang Y, Wang Y, Lui Y, Wei W, Huang X, et al. (2010) Targeting P2X(7) receptor inhibits the metastasis of murine P388D1 lymphoid neoplasm cells to lymph nodes. Cell Biol Int 34(12):1205–1211

    Article  CAS  Google Scholar 

  • Ris HB, Altermatt HJ, Inderbitzi R, Hess R, Nachbur B, Stewart JC, et al. (1991) Photodynamic therapy with chlorins for diffuse malignant mesothelioma: initial clinical results. Br J Cancer 64(6):1116–1120

    Article  CAS  Google Scholar 

  • Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011) Lest we forget you--methylene blue... Neurobiology of Aging 32(12):2325 e7–2325 16

    Article  Google Scholar 

  • Schmidt SSB, Wagner U, Oehr P, Decleer W, Lubaschowski H, et al. (1991) Photodynamic laser therapy of carcinomas--effects of five different photosensitizers in the colony-forming assay. Arch Gynecol Obstet 249(1):9–14

    Article  CAS  Google Scholar 

  • Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, et al. (2008) Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149(1):389–396

    Article  CAS  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  Google Scholar 

  • Tada DBVL, Duarte EL, Itri R, Kiyohara PK, Baptista MS, et al. (2007) Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23(15):8194–8199

    Article  CAS  Google Scholar 

  • Tamosiunas M, Bagdonas S, Didziapetriene J, Rotomskis R (2005) Electroporation of transplantable tumour for the enhanced accumulation of photosensitizers. J Photochem Photobiol B 81(2):67–75

    Article  CAS  Google Scholar 

  • Tang WXH, Kopelman R, Philbert MA (2005) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 81(2):242–249

    Article  CAS  Google Scholar 

  • Tardivo JP G, A.; Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C. et al. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2005;2:175—191.

  • Tuite EM, Kelly JM (1993) Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B 21(2–3):103–124

    Article  CAS  Google Scholar 

  • Usacheva MN, Teichert MC, Biel MA (2001) Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med 29(2):165–173

    Article  CAS  Google Scholar 

  • van Hillegersberg R, Hekking-Weijma JM, Wilson JH, Edixhoven-Bosdijk A, Kort WJ (1995) Adjuvant intraoperative photodynamic therapy diminishes the rate of local recurrence in a rat mammary tumour model. Br J Cancer 71(4):733–737

    Article  CAS  Google Scholar 

  • Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519(2):335–346

    Article  CAS  Google Scholar 

  • Volonte C, Apolloni S, Skaper SD, Burnstock G (2012) P2X7 receptors: channels, pores and more. CNS & neurological disorders drug targets 11(6):705–721

    Article  CAS  Google Scholar 

  • Wagner SJ (2002) Virus inactivation in blood components by photoactive phenothiazine dyes. Transfus Med Rev 16(1):61–66

    Article  Google Scholar 

  • Wainwright M, Phoenix DA, Rice L, Burrow SM, Waring J (1997) Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J Photochem Photobiol B 40(3):233–239

    Article  CAS  Google Scholar 

  • Wainwright M, Phoenix DA, Smillie TE, Wareing DR (2001) Phenothiaziniums as putative photobactericidal agents for red blood cell concentrates. J Chemother 13(5):503–509

    Article  CAS  Google Scholar 

  • Wei W, M W, Xuejun K, Songqin L (2008) Spectrophotometry study of interaction of hyaluronic acid with methylene blue and its analytic application. Anal Lett 41(4):599–607

    Article  CAS  Google Scholar 

  • White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27(4):211–217

    Article  CAS  Google Scholar 

  • Wiley JS, Sluyter R, Gu BJ, Stokes L, Fuller SJ (2011) The human P2X7 receptor and its role in innate immunity. Tissue Antigens 78(5):321–332

    Article  CAS  Google Scholar 

  • Yan Z, Li S, Liang Z, Tomić M, Stojilkovic SS (2008) The P2X7 receptor channel pore dilates under physiological ion conditions. The Journal of general physiology 132(5):563–573

    Article  CAS  Google Scholar 

  • Yew KLKZ (2015) Guidezilla guide extension catheter facilitated the delivery of long and bulky In.Pact Falcon drug-coated balloon for the treatment of chronic total occlusion lesion. Int J Cardiol. 201:220–221

    Article  Google Scholar 

  • Yuan BS, Zhu RM, Braddock M, Zhang XH, Shi W, Zheng MH (2007) Interleukin-18: a pro-inflammatory cytokine that plays an important role in acute pancreatitis. Expert Opin Ther Targets 11(10):1261–1271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), PAPES VI – CNPq, Oswaldo Cruz Institute and FAPERJ. The experiments using HEK 293 cells were carried out in the Laboratory of Inflammation, Oswaldo Cruz Institute.

Author contributions

PAFP carried out the phototherapy and toxicity assays, participated in the sequence alignment and drafted the manuscript. LBGF carried out the phototherapy and toxicity assays and participated in the sequence alignment of the manuscript. DNMF and JPS carried out the phototherapy and toxicity assays. JPS carried out the phototherapy and toxicity assays. RXF participated in the design of the study and helped to revise the manuscript. PCNT conceived of the study, and participate in its design. LAA participated in its design and coordination of the study. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Xavier Faria.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, P.A.F., Ferreira, L.B.G., Mendonça, L. et al. P2X7 receptor as a novel drug delivery system to increase the entrance of hydrophilic drugs into cells during photodynamic therapy. J Bioenerg Biomembr 48, 397–411 (2016). https://doi.org/10.1007/s10863-016-9668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9668-6

Keywords

Navigation