Skip to main content
Log in

Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Intrinsic protein fluorescence is due to aromatic amino acids, mainly tryptophan, which can be selectively measured by exciting at 295 nm. Changes in emission spectra of tryptophan are due to the protein conformational transitions, subunit association, ligand binding or denaturation, which affect the local environment surrounding the indole ring. In this study, tryptophan fluorescence was monitored in intact mitochondria at 333 nm following excitation at 295 nm in presence of insecticides using spectrofluorometer. Methyl-parathion, carbofuran, and endosulfan induced Trp fluorescence quenching and release of cytochrome c when incubated with the mitochondria, except fenvalarate. Mechanism of insecticide-induced mitochondrial toxicity for the tested insecticides has been discussed. Reduction in the intensity of tryptophan emission spectra of mitochondrial membrane proteins in presence of an increasing concentration of a ligand can be used to study the interaction of insecticides/drugs with the intact mitochondria. Furthermore, this assay can be readily adapted for studying protein–ligand interactions in intact mitochondria and in other cell organelles extending its implications for pesticide and pharma industry and in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  • Abdelhameed AS, Alam P, Khan RH (2015) Binding of janus kinase inhibitor tofacitinib with human serum albumin: multi-technique approach. J Biomol Struct Dyn. doi:10.1080/07391102.2015.1104522

    Google Scholar 

  • Ahmad B, Muteeb G, Alam P, Varshney A, Zaidi N, Ishtikhar M, Badr G, Mahmoud MH, Khan RH (2015) Thermal induced unfolding of human serum albumin isomers: assigning residual alpha helices to domain II. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2015.02.003

    Google Scholar 

  • Akbar SMD, Sharma HC, Jayalakshmi SK, Sreeramulu K (2012) Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera. J Bioenerg Biomembr 44:233–241

    Article  CAS  Google Scholar 

  • Alam P, Naseem F, Abdelhameed AS, Khan RH (2015a) Effect of galactose on acid induced molten globule state of soybean agglutinin: biophysical approach. J Mol Struct 1099:149–153

    Article  CAS  Google Scholar 

  • Alam P, Chaturvedi SK, Anwar T, Siddiqi MK, Ajmal MR, Badr G, Mahmoud MH, Khan RH (2015b) Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin. J Lumin 164:123–130

    Article  CAS  Google Scholar 

  • Alam P, Rabbani G, Badr G, Badr BM, Khan RH (2015c) The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase. Cell Biochem Biophys 71:1199–1206

    Article  CAS  Google Scholar 

  • Aurade RM, Jayalakshmi SK, Sreeramulu K (2010a) P-glycoprotein ATPase from the resistant pest, Helicoverpa armigera: purification, characterization and effect of various insecticides on its transport function. Biochim Biophys Acta 1798:1135–1143

    Article  CAS  Google Scholar 

  • Aurade RM, Jayalakshmi SK, Sreeramulu K (2010b) Modulatory effects of natural curcuminoids on P-glycoprotein ATPase of insecticide-resistant pest Helicoverpa armigera (Lepidopetera: noctuidae). J Membrane Biol 236:271–278

    Article  CAS  Google Scholar 

  • Aurade RM, Jayalakshmi SK, Udikeri SS, Sreeramulu K (2012) Modulation of P-glycoprotein ATPase of Helicoverpa armigera by cholesterol: effects on ATPase activity and interaction of insecticides. Arch Insect Biochem Physiol 79:47–60.

    Article  CAS  Google Scholar 

  • Bent DV, Hayon E (1975) Excited state chemistry of aromatic amino acids and related peptides. III Tryptophan J Am Chem Soc 97:2612–2619

    Article  CAS  Google Scholar 

  • Bryant FD, Santus R, Grossweiner LI (1975) Laser flash-photolysis of aqueous tryptophan. J Phys Chem 79:2711–2716

    Article  CAS  Google Scholar 

  • Chamberlin ME (2004) Control of oxidative phosphorylation during insect metamorphosis. Am J Physiol Regul Integr Comp Physiol 287:314–321

    Article  Google Scholar 

  • Chaturvedi SK, Zaidi N, Alam P, Khan JM, Qadeer A, Siddique IA, et al. (2015a) Unraveling comparative anti-amyloidogenic behavior of pyrazinamide and D-cycloserine: a mechanistic biophysical insight. PLoS one 10(8):e0136528. doi:10.1371/journal.pone.0136528

    Article  Google Scholar 

  • Chaturvedi SK, Alam P, Khan JM, Siddique MK, P Kalaiarasan, N Subbarao, Z Ahmad, R.H. Khan. (2015b), Biophysical insight into the anti-amyloidogenic behavior of taurine. Int J Biol Macromol doi:10.1016/j.ijbiomac.2015.06.035.

  • Chaturvedi SK, Khan JM, Siddiqui MK, Alam P, Khan RH (2015c) Comparative insight into surfactants mediated amyloidogenesis of lysozyme. Int J Biol Macromol 83:315–325

    Article  Google Scholar 

  • Chen D, Huang X, Liu L, Shi N (2007) Deltamethrin induces mitochondrial membrane permeability and altered expression of cytochrome C in rat brain. J Appl Toxicol 27:368–372

    Article  CAS  Google Scholar 

  • Chen Z, Xu H, Zhu Y, Liu J, Wang K, Wang P, et al. (2014) Understanding the fate of an anesthetic, nalorphine upon interaction with human serum albumin: a photophysical and mass-spectroscopy approach. RSC Adv 4:25410–25419

    Article  CAS  Google Scholar 

  • Chitti Babu G, Sharma HC, Madhumati T, Raghavaiah G, Murthy KVMK, Rao VS (2014) A semi-synthetic chickpea flour based diet for long-term maintenance of laboratory culture of Helicoverpa armigera. Indian J Entomol 76:336–340

    Google Scholar 

  • Gassner B, Wüthrich A, Sholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Therapeut 281:855–860

    CAS  Google Scholar 

  • Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide–induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci 122(2):512–525

    Article  CAS  Google Scholar 

  • Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969

    Article  CAS  Google Scholar 

  • Kashyap MP, Singh AK, Siddiqui MA, Kumar V, Tripathi VK, Khanna VK, Yadav S, Jain SK, Pant AB (2010) Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chem Res Toxicol 23:1663–1672

    Article  CAS  Google Scholar 

  • Kaur P, Radotra B, Minz RW, Gill KD (2007) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology 28(6):1208–1219

    Article  CAS  Google Scholar 

  • Kitazawa M, Anantharam V, Kanthasamy AG (2003) Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase cdelta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration. Neuroscience 119:945–964

    Article  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, Kluwer Academic/Plenum Publishers, New York, pp. 1–24

  • Li Q, Kobayashi M, Kawada T (2015) Carbamate pesticide-induced apoptosis in human T Lymphocytes. Int J Environ Res Public Health 12:3633–3645

    Article  CAS  Google Scholar 

  • Liu R, Siemiarczuk A, Sharom FJ (2000) Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides. Biochemistry 39:14927–14938

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randal AJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lukaszewicz-Hussain A, Moniuszko-Jakoniuk J (2004) Chlorfenvinphos, an organophosphate insecticide, affects liver mitochondria antioxidative enzymes, glutathione and hydrogen peroxide concentration. Pol J Environ Stud 13:397–401

    CAS  Google Scholar 

  • Moller M, Denicola A (2002) Protein tryptophan accessibility studied by fluorescence quenching. Biochem Mol Biol Educ 30:175–178

    Article  CAS  Google Scholar 

  • Morena AJM, Serafim TL, Oliveira PJ, Madeira VMC (2007) Inhibition of mitochondrial bioenergetics by carbaryl is only evident for higher concentrations – relevance for carbaryl toxicity mechanisms. Chemosphere 66:404–411

    Article  Google Scholar 

  • Moreno AJM, Madeira VMC (1990) Interference of parathion with mitochondrial bioenergetics. Biochim Biophys Acta 1015:361–367

    Article  CAS  Google Scholar 

  • Nakagawa Y, Nakajima K, Suzuki T (2004) Chlorpropham induces mitochondrial dysfunction in rat hepatocytes. Toxicology 200:123–133

    Article  CAS  Google Scholar 

  • Reddy PM, Phillip GH (1992) Changes in the levels of respiration and ions in the tissues of freshwater fish, Labeo rohita under fenvalerate stress. Chemosphere 25:843–852

    Article  CAS  Google Scholar 

  • Walther DM, Rapaport D (2009) Biogenesis of mitochondrial outer membrane proteins. Biochim Biophys Acta 1793:42–51

  • Wu A, Liu Y (2000) Deltamethrin induces delayed apoptosis and altered expression of p53 and bax in rat brain. environ. Toxicol Pharmacol 8:183–189

    Article  CAS  Google Scholar 

  • Wu A, Li L, Liu Y (2003) Deltamethrin induces apoptotic cell death in cultured cerebral cortical neurons. Toxicol Appl Pharmacol 187:50–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari C. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, S.M., Sreeramulu, K. & Sharma, H.C. Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria. J Bioenerg Biomembr 48, 241–247 (2016). https://doi.org/10.1007/s10863-016-9653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9653-0

Keywords

Navigation