Skip to main content
Log in

Physiological roles of the mitochondrial permeability transition pore

Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, French RJ, Pavlov E (2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A 104:18091–18096. doi:10.1073/pnas.0708959104

    Article  CAS  Google Scholar 

  • Adams JM, Cory S (2007) The bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    Article  CAS  Google Scholar 

  • Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJ, Hardwick JM, Jonas EA (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13:1224–1233. doi:10.1038/ncb2330)

    Article  CAS  Google Scholar 

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10580–10585. doi:10.1073/pnas.1401591111

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278

    Article  CAS  Google Scholar 

  • Azarashvili T, Odinokova I, Bakunts A, Ternovsky V, Krestinina O, Tyynela J, Saris NE (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 55:69–77. doi:10.1016/j.ceca.2013.12.002

    Article  CAS  Google Scholar 

  • M. F. Beal, Mitochondria and neurodegeneration. Novartis Found Symp 287, 183–192; discussion 192–186 (2007).

  • Berman SB, Chen YB, Qi B, McCaffery JM, Rucker EB 3rd, Goebbels S, Nave KA, Arnold BA, Jonas EA, Pineda FJ, Hardwick JM (2009) published online EpubMar 9 Bcl-x L increases mitochondrial fission, fusion, and biomass in neurons. J Cell Biol 184:707–719

    Article  CAS  Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    CAS  Google Scholar 

  • Beutner G, Ruck A, Riede B, Welte W, Brdiczka D (1996) published online EpubNov 4 Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396:189–195

    Article  CAS  Google Scholar 

  • Beutner G, Ruck A, Riede B, Brdiczka D (1998) published online EpubJan 5 Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18

    Article  CAS  Google Scholar 

  • Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One 9:e113330. doi:10.1371/journal.pone.0113330)

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. doi:10.4161/cc.23599

    Article  CAS  Google Scholar 

  • Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2014) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 0. doi:10.1038/onc.2014.96

  • Borjesson SI, Elinder F (2008) Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 52:149–174. doi:10.1007/s12013-008-9032-5)

    Article  CAS  Google Scholar 

  • Brand MD (2005) published online EpubNov The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33:897–904

    Article  CAS  Google Scholar 

  • Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D (2005) Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. J Mol Biol 351:824–838. doi:10.1016/j.jmb.2005.06.012

    Article  CAS  Google Scholar 

  • Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) published online EpubJul 23 Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279:31761–31768

    Article  CAS  Google Scholar 

  • Chen YB, Aon MA, Hsu YT, Soane L, Teng X, McCaffery JM, Cheng WC, Qi B, Li H, Alavian KN, Dayhoff-Brannigan M, Zou S, Pineda FJ, O'Rourke B, Ko YH, Pedersen PL, Kaczmarek LK, Jonas EA, Hardwick JM (2011) published online EpubOct 17 Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol 195:263–276

    Article  CAS  Google Scholar 

  • Chinopoulos C, Szabadkai G (2014) What Makes You Can also Break You, Part III: Mitochondrial Permeability Transition Pore Formation by an Uncoupling Channel within the C-Subunit Ring of the F1FO ATP Synthase? Frontiers oncol 4:235. doi:10.3389/fonc.2014.00235)

    Article  Google Scholar 

  • Cho SW, Park JS, Heo HJ, Park SW, Song S, Kim I, Han YM, Yamashita JK, Youm JB, Han J, Koh GY (2014) Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells. J Am Heart Assoc 3:e000693. doi:10.1161/JAHA.113.000693

    Article  CAS  Google Scholar 

  • Chouhan AK, Ivannikov MV, Lu Z, Sugimori M, Llinas RR, Macleod GT (2012) Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity. J Neurosci 32:1233–1243. doi:10.1523/JNEUROSCI.1301-11.2012

    Article  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  Google Scholar 

  • Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258:729–735

    Article  CAS  Google Scholar 

  • Csordas G, Thomas AP, Hajnoczky G (2001) published online EpubOct Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle. Trends cardiovasc med 11:269–275

    Article  CAS  Google Scholar 

  • De Marchi E, Bonora M, Giorgi C, Pinton P (2014) The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56:1–13. doi:10.1016/j.ceca.2014.03.004

    Article  CAS  Google Scholar 

  • Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B, Jonas EA, Kinnally KW (2005) Oligomeric bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432

    Article  CAS  Google Scholar 

  • Dejean LM, Martinez-Caballero S, Manon S, Kinnally KW (2006) Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL-2 family proteins. Biochim Biophys Acta 1762:191–201 published online EpubFeb

    Article  CAS  Google Scholar 

  • Di Lisa F, Carpi A, Giorgio V, Bernardi P (2011) The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta 1813:1316–1322. doi:10.1016/j.bbamcr.2011.01.031

    Article  CAS  Google Scholar 

  • Dodson MW, Guo M (2007) published online EpubJun Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol 17:331–337

    Article  CAS  Google Scholar 

  • Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B, Goonasekera SA, Karch J, Gabel S, Farber J, Force T, Brown JH, Murphy E, Molkentin JD (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687. doi:10.1172/JCI43171

    Article  CAS  Google Scholar 

  • Elustondo PA, Angelova PR, Kawalec M, Michalak M, Kurcok P, Abramov AY, Pavlov EV (2013) Polyhydroxybutyrate targets mammalian mitochondria and increases permeability of plasmalemmal and mitochondrial membranes. PLoS One 8:e75812. doi:10.1371/journal.pone.0075812)

    Article  CAS  Google Scholar 

  • Friel DD, Tsien RW (1994) An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci 14:4007–4024

    CAS  Google Scholar 

  • Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, Kuwahara K, Harada M, Matsuda H, Matsuoka S, Okita K, Takahashi K, Nakagawa M, Ikeda T, Sakata R, Mummery CL, Nakatsuji N, Yamanaka S, Nakao K, Yamashita JK (2011) Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One 6:e16734. doi:10.1371/journal.pone.0016734)

    Article  CAS  Google Scholar 

  • Galonek HL, Hardwick JM (2006) Upgrading the BCL-2 network.[comment]. Nat Cell Biol 8:1317–1319

    Article  CAS  Google Scholar 

  • Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) published online EpubDec 4 Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988

    Article  CAS  Google Scholar 

  • Giorgio V, Soriano ME, Basso E, Bisetto E, Lippe G, Forte MA, Bernardi P (2010) published online EpubJun-Jul Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118

    Article  CAS  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892. doi:10.1073/pnas.1217823110

    Article  CAS  Google Scholar 

  • Gomez L, Thibault H, Gharib A, Dumont JM, Vuagniaux G, Scalfaro P, Derumeaux G, Ovize M (2007) Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol 293:H1654–H1661. doi:10.1152/ajpheart.01378.2006

    Article  CAS  Google Scholar 

  • Gottlieb E, Armour SM, Thompson CB (2002) Mitochondrial respiratory control is lost during growth factor deprivation. Proc Natl Acad Sci U S A 99:12801–12806

    Article  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98 published online EpubApr 1

    Article  CAS  Google Scholar 

  • Guerrieri F, Capozza G, Kalous M, Papa S (1992) published online EpubNov 30 Age-related changes of mitochondrial F0F1 ATP synthase. Ann N Y Acad Sci 671:395–402

    Article  CAS  Google Scholar 

  • Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. Biochim Biophys Acta 1787:1291–1308. doi:10.1016/j.bbabio.2008.12.011

    Article  CAS  Google Scholar 

  • Gutierrez-Aguilar M, Douglas DL, Gibson AK, Domeier TL, Molkentin JD, Baines CP (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325. doi:10.1016/j.yjmcc.2014.04.008

    Article  CAS  Google Scholar 

  • Halestrap AP, Davidson AM (1990) published online EpubMay 15 Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160

    Article  CAS  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717. doi:10.1161/01.CIR.0000126294.81407.7D

    Article  CAS  Google Scholar 

  • R. A. Haworth, D. R. Hunter, The Ca2+−induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195, 460–467 (1979); published online EpubJul

  • Hickman JA, Hardwick JM, Kaczmarek LK, Jonas EA (2008) published online EpubMar Bcl-xL inhibitor ABT-737 reveals a dual role for Bcl-xL in synaptic transmission. J Neurophysiol 99:1515–1522

    Article  CAS  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) published online EpubNov 22 Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  CAS  Google Scholar 

  • Holmstrom KM, Marina N, Baev AY, Wood NW, Gourine AV, Abramov AY (2013) Signalling properties of inorganic polyphosphate in the mammalian brain. Nat Commun 4:1362. doi:10.1038/ncomms2364)

    Article  CAS  Google Scholar 

  • Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, Sheu SS, Porter GA Jr (2011) The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell 21:469–478. doi:10.1016/j.devcel.2011.08.008

  • Hubbard MJ, McHugh NJ (1996) published online EpubAug 12 Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett 391:323–329

    Article  CAS  Google Scholar 

  • D. R. Hunter, R. A. Haworth, The Ca2+−induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195, 453–459 (1979); published online EpubJul

  • Huser J, Blatter LA (1999) published online EpubOct 15 Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J 343(Pt 2):311–317

    Article  CAS  Google Scholar 

  • F. Ichas, J. P. Mazat, From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366, 33–50 (1998); published online EpubAug 10

  • Jonas E (2006) BCL-xL regulates synaptic plasticity. Mol Interv 6:208–222

    Article  CAS  Google Scholar 

  • Jonas EA (2009) published online EpubAug Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Exp Neurol 218:203–212

    Article  CAS  Google Scholar 

  • Jonas EA, Knox RJ, Kaczmarek LK (1997) Giga-ohm seals on intracellular membranes: a technique for studying intracellular ion channels in intact cells. Neuron 19:7–13

    Article  CAS  Google Scholar 

  • Jonas EA, Buchanan J, Kaczmarek LK (1999) Prolonged activation of mitochondrial conductances during synaptic transmission. Science 286:1347–1350

    Article  CAS  Google Scholar 

  • Jonas EA, Hoit D, Hickman JA, Brandt TA, Polster BM, Fannjiang Y, McCarthy E, Montanez MK, Hardwick JM, Kaczmarek LK (2003) Modulation of synaptic transmission by the BCL-2 family protein BCL-xL. J Neurosci 23:8423–8431

    CAS  Google Scholar 

  • Jonckheere AI, Smeitink JA, Rodenburg RJ (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35:211–225. doi:10.1007/s10545-011-9382-9

    Article  CAS  Google Scholar 

  • Jouaville LS, Ichas F, Mazat JP (1998) published online EpubJul Modulation of cell calcium signals by mitochondria. Mol Cell Biochem 184:371–376

    Article  CAS  Google Scholar 

  • Karch J, Molkentin JD (2014) Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10396–10397. doi:10.1073/pnas.1410104111

    Article  CAS  Google Scholar 

  • Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies.[see comment]. Nat Cell Biol 8:1348–1358

    Article  CAS  Google Scholar 

  • Kinnally KW, Campo ML, Tedeschi H (1989) Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr 21:497–506

    Article  CAS  Google Scholar 

  • K. W. Kinnally, S. Martinez-Caballero, L. M. Dejean, (2006) Detection of the mitochondrial apoptosis-induced channel (MAC) and its regulation by Bcl-2 family proteins. Current protoc. toxicol. Chapter 2, Unit2 12; published online EpubDec

  • Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622. doi:10.1016/j.bbamcr.2010.09.013

    Article  CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore.[see comment]. Nature 427:461–465

    Article  CAS  Google Scholar 

  • Korge P, Yang L, Yang JH, Wang Y, Qu Z, Weiss JN (2011) Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem 286:34851–34857. doi:10.1074/jbc.M111.239921

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Naia-da-Silva ES, Castilho RF, Vercesi AE (1998) Ca2+−stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+. Arch Biochem Biophys 359:77–81. doi:10.1006/abbi.1998.0870

    Article  CAS  Google Scholar 

  • Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320. doi:10.1016/j.cmet.2008.02.004

    Article  CAS  Google Scholar 

  • Kwong JQ, Davis J, Baines CP, Sargent MA, Karch J, Wang X, Huang T, Molkentin JD (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21:1209–1217. doi:10.1038/cdd.2014.36

    Article  CAS  Google Scholar 

  • Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952. doi:10.1016/j.bbabio.2008.03.009

    Article  CAS  Google Scholar 

  • Li H, Chen Y, Jones AF, Sanger RH, Collis LP, Flannery R, McNay EC, Yu T, Schwarzenbacher R, Bossy B, Bossy-Wetzel E, Bennett MV, Pypaert M, Hickman JA, Smith PJ, Hardwick JM, Jonas EA (2008) Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 105:2169–2174

    Article  CAS  Google Scholar 

  • Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871 published online EpubMay 28

    Article  CAS  Google Scholar 

  • Li H, Alavian KN, Lazrove E, Mehta N, Jones A, Zhang P, Licznerski P, Graham M, Uo T, Guo J, Rahner C, Duman RS, Morrison RS, Jonas EA (2013) A bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nat Cell Biol 15:773–785. doi:10.1038/ncb2791

    Article  CAS  Google Scholar 

  • Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289:10261–10268. doi:10.1074/jbc.O114.555565

    Article  CAS  Google Scholar 

  • Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW (2005) The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 37:155–164

    Article  CAS  Google Scholar 

  • Matthies D, Preiss L, Klyszejko AL, Muller DJ, Cook GM, Vonck J, Meier T (2009) The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J Mol Biol 388:611–618. doi:10.1016/j.jmb.2009.03.052

    Article  CAS  Google Scholar 

  • McGeoch JE, Guidotti G (1997) published online EpubAug 22 A 0.1-700 Hz current through a voltage-clamped pore: candidate protein for initiator of neural oscillations. Brain Res 766:188–194

    Article  CAS  Google Scholar 

  • McGeoch JE, McGeoch MW (2008) Entrapment of water by subunit c of ATP synthase. J Royal Soc, Interface/ Roy Soc 5:311–318. doi:10.1098/rsif.2007.1146

  • McGeoch JE, McGeoch MW, Mao R, Guidotti G (2000) Opposing actions of cGMP and calcium on the conductance of the F(0) subunit c pore. Biochem Biophys Res Commun 274:835–840. doi:10.1006/bbrc.2000.3231

    Article  CAS  Google Scholar 

  • Meier T, Matthey U, Henzen F, Dimroth P, Muller DJ (2001) published online EpubSep 21 The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett 505:353–356

    Article  CAS  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872. doi:10.1016/j.neuron.2008.08.019

    Article  CAS  Google Scholar 

  • Norris U, Karp PE, Fimmel AL (1992) published online EpubJul Mutational analysis of the glycine-rich region of the c subunit of the Escherichia coli F0F1 ATPase. J Bacteriol 174:4496–4499

    Article  CAS  Google Scholar 

  • Oberfeld B, Brunner J, Dimroth P (2006) Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli. Biochemistry 45:1841–1851. doi:10.1021/bi052304+

    Article  CAS  Google Scholar 

  • Pasdois P, Parker JE, Halestrap AP (2013) Extent of mitochondrial hexokinase II dissociation during ischemia correlates with mitochondrial cytochrome c release, reactive oxygen species production, and infarct size on reperfusion. J Am Heart Assoc 2:e005645. doi:10.1161/JAHA.112.005645

    Google Scholar 

  • Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and bax expression in yeast. J Cell Biol 155:725–731

    Article  CAS  Google Scholar 

  • Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, French RJ (2005) A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J 88:2614–2625. doi:10.1529/biophysj.104.057281

    Article  CAS  Google Scholar 

  • Pedersen PL (1994) published online EpubDec 1 ATP synthase. The machine that makes ATP. Curr biol: CB 4:1138–1141

    Article  CAS  Google Scholar 

  • Pedersen PL, Hullihen J (1978) published online EpubApr 10 Adenosine triphosphatase of rat liver mitochondria. Capacity of the homogeneous F1 component of the enzyme to restore ATP synthesis in urea-treated membranes. J Biol Chem 253:2176–2183

    CAS  Google Scholar 

  • Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143

    Article  CAS  Google Scholar 

  • Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734. doi:10.1016/S0006-3495(99)77239-5)

    Article  CAS  Google Scholar 

  • Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Muller DJ, Dimroth P, Meier T (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J Bacteriol 189:5895–5902. doi:10.1128/JB.00581-07

    Article  CAS  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408. doi:10.1152/physrev.00004.2005

    Article  CAS  Google Scholar 

  • Rizzuto R, Bernardi P, Pozzan T (2000) published online EpubNov 15 Mitochondria as all-round players of the calcium game. J Physiol 529(Pt 1):37–47

    Article  CAS  Google Scholar 

  • Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) published online EpubNov Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

    Article  CAS  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. doi:10.1038/nrm3412

    Article  CAS  Google Scholar 

  • Roestenberg P, Manjeri GR, Valsecchi F, Smeitink JA, Willems PH, Koopman WJ (2012) Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond. Mitochondrion 12:57–65. doi:10.1016/j.mito.2011.06.011

    Article  CAS  Google Scholar 

  • Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274. doi:10.1016/j.conb.2005.05.006

    Article  CAS  Google Scholar 

  • Seidlmayer LK, Blatter LA, Pavlov E, Dedkova EN (2012) Inorganic polyphosphate–an unusual suspect of the mitochondrial permeability transition mystery. Channels 6:463–467. doi:10.4161/chan.21939

    Article  CAS  Google Scholar 

  • Sorgato MC, Keller BU, Stuhmer W (1987) Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330:498–500

    Article  CAS  Google Scholar 

  • Stotz SC, Scott LO, Drummond-Main C, Avchalumov Y, Girotto F, Davidsen J, Gomez-Garcia MR, Rho JM, Pavlov EV, Colicos MA (2014) Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels. Mol brain 7:42. doi:10.1186/1756-6606-7-42

    Article  CAS  Google Scholar 

  • Szabo I, Zoratti M (1991) The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem 266:3376–3379

    CAS  Google Scholar 

  • Szabo I, Bernardi P, Zoratti M (1992) Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267:2940–2946

    CAS  Google Scholar 

  • Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491

    Article  CAS  Google Scholar 

  • H. L. Tang, H. M. Tang, M. C. Fung, J. M. Hardwick, (2015) In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Report 5, 9015 doi:10.1038/srep09015.

  • Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A 97:4666–4671

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414–19419

    Article  CAS  Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16. doi:10.1042/BST20110773

    Article  CAS  Google Scholar 

  • Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Superoxide flashes in single mitochondria. Cell 134:279–290. doi:10.1016/j.cell.2008.06.017)

    Article  CAS  Google Scholar 

  • Wittig I, Schagger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787:672–680. doi:10.1016/j.bbabio.2008.12.016

    Article  CAS  Google Scholar 

  • Woodfield K, Ruck A, Brdiczka D, Halestrap AP (1998) published online EpubDec 1 Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336(Pt 2):287–290

    Article  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  Google Scholar 

  • Zakharov SD, Li X, Red'ko TP, Dilley RA (1996) published online EpubDec Calcium binding to the subunit c of E. coli ATP-synthase and possible functional implications in energy coupling. J Bioenerg Biomembr 28:483–494

    Article  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Jonas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnatsakanyan, N., Beutner, G., Porter, G.A. et al. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 49, 13–25 (2017). https://doi.org/10.1007/s10863-016-9652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9652-1

Keywords

Navigation