Skip to main content

Advertisement

Log in

Mg2+ differentially regulates two modes of mitochondrial Ca2+ uptake in isolated cardiac mitochondria: implications for mitochondrial Ca2+ sequestration

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The manner in which mitochondria take up and store Ca2+ remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca2+ uptake and a complex Ca2+ sequestration mechanism in mitochondria. But how Mg2+ regulates these different modes of Ca2+ uptake as well as mitochondrial Ca2+ sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca2+ by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca2+ uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca2+ uptake modes were differentially modulated by extra-matrix Mg2+. That is, Mg2+ markedly inhibited the slow mode of Ca2+ uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg2+ also inhibited Na+-dependent Ca2+ extrusion. The general Ca2+ binding properties of the mitochondrial Ca2+ sequestration system were reaffirmed and shown to be independent of the mode of Ca2+ uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg2+ hindered Ca2+ sequestration. Our results indicate that mitochondria exhibit different modes of Ca2+ uptake depending on the nature of exposure to extra-matrix Ca2+, which are differentially sensitive to Mg2+. The implications of these findings in cardiomyocytes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal B, Camara AK, Stowe DF, Bosnjak ZJ, Dash RK (2012) Enhanced charge-independent mitochondrial free Ca(2+) and attenuated ADP-induced NADH oxidation by isoflurane: implications for cardioprotection. Biochim Biophys Acta 1817(3):453–465. doi:10.1016/j.bbabio.2011.11.011

    Article  CAS  Google Scholar 

  • Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AK (2014) Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochim Biophys Acta 1837(3):354–365. doi:10.1016/j.bbabio.2013.11.006

    Article  CAS  Google Scholar 

  • Aldakkak M, Camara AK, Heisner JS, Yang M, Stowe DF (2011) Ranolazine reduces Ca2 + overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res 64(4):381–392. doi:10.1016/j.phrs.2011.06.018

  • Aldakkak M, Stowe DF, Dash RK, Camara AK (2013) Mitochondrial handling of excess Ca2 + is substrate-dependent with implications for reactive oxygen species generation. Free Radic Biol Med 56:193–203. doi:10.1016/j.freeradbiomed.2012.09.020

  • An J, Varadarajan SG, Camara A, Chen Q, Novalija E, Gross GJ, et al. (2001a) Blocking Na(+)/H(+) exchange reduces [Na(+)](i) and [Ca(2+)](i) load after ischemia and improves function in intact hearts. Am J Physiol Heart Circ Physiol 281(6):H2398–H2409

    CAS  Google Scholar 

  • An J, Varadarajan SG, Novalija E, Stowe DF (2001b) Ischemic and anesthetic preconditioning reduces cytosolic [Ca2 +] and improves Ca(2+) responses in intact hearts. Am J Physiol Heart Circ Physiol 281(4):H1508–H1523

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, et al. (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345. doi:10.1038/nature10234

    Article  CAS  Google Scholar 

  • Bazil JN, Dash RK (2011) A minimal model for the mitochondrial rapid mode of Ca2+ uptake mechanism. PLoS One 6(6):e21324. doi:10.1371/journal.pone.0021324

    Article  CAS  Google Scholar 

  • Bazil JN, Blomeyer CA, Pradhan RK, Camara AK, Dash RK (2013) Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria. J Bioenerg Biomembr 45(3):177–188. doi:10.1007/s10863-012-9488-2

    Article  CAS  Google Scholar 

  • Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276(24):21482–21488. doi:10.1074/jbc.M101486200

    Article  CAS  Google Scholar 

  • Blomeyer CA, Bazil JN, Stowe DF, Pradhan RK, Dash RK, Camara AK (2013) Dynamic buffering of mitochondrial Ca2 + during Ca2 + uptake and Na + -induced Ca2 + release. J Bioenerg Biomembr 45(3):189–202. doi:10.1007/s10863-012-9483-7

  • Boelens AD, Pradhan RK, Blomeyer CA, Camara AK, Dash RK, Stowe DF (2013) Extra-matrix Mg2 + limits Ca2 + uptake and modulates Ca2 + uptake-independent respiration and redox state in cardiac isolated mitochondria. J Bioenerg Biomembr 45(3):203–218. doi:10.1007/s10863-013-9500-5

  • Boyman L, Williams GS, Khananshvili D, Sekler I, Lederer WJ (2013) NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 59:205–213. doi:10.1016/j.yjmcc.2013.03.012

    Article  CAS  Google Scholar 

  • Boyman L, Chikando AC, Williams GS, Khairallah RJ, Kettlewell S, Ward CW, et al. (2014) Calcium movement in cardiac mitochondria. Biophys J 107(6):1289–1301. doi:10.1016/j.bpj.2014.07.045

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brierley GP, Bachmann E, Green DE (1962) Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc Natl Acad Sci U S A 48:1928–1935

    Article  CAS  Google Scholar 

  • Brierley G, Murer E, Bachmann E, Green DE (1963) Studies on ion transport. II. The accumulation of inorganic phosphate and magnesium ions by heart mitochondria. J Biol Chem 238:3482–3489

    CAS  Google Scholar 

  • Brierley GP, Murer E, O'Brien RL (1964) Studies on ion transport. Vi. The accumulation of Mg2 + by heart mitochondria in the absence of inorganic phosphate. Biochim Biophys Acta 88:645–647

  • Buntinas L, Gunter KK, Sparagna GC, Gunter TE (2001) The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim Biophys Acta 1504(2–3):248–261

    Article  CAS  Google Scholar 

  • Cai X, Lytton J (2004) Molecular cloning of a sixth member of the K + -dependent Na+/Ca2 + exchanger gene family, NCKX6. J Biol Chem 279(7):5867–5876. doi:10.1074/jbc.M310908200

  • Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797(6–7):595–606. doi:10.1016/j.bbabio.2010.03.024

    Article  CAS  Google Scholar 

  • Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278(21):19062–19070. doi:10.1074/jbc.M212661200

    Article  CAS  Google Scholar 

  • Csordas G, Golenar T, Seifert EL, Kamer KJ, Sancak Y, Perocchi F, et al. (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab 17(6):976–987. doi:10.1016/j.cmet.2013.04.020

    Article  CAS  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. doi:10.1038/nature10230

    Article  Google Scholar 

  • Dedkova EN, Blatter LA (2013) Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 58:125–133. doi:10.1016/j.yjmcc.2012.12.021

    Article  CAS  Google Scholar 

  • Dorn 2nd GW, Maack C (2013) SR and mitochondria: calcium cross-talk between kissing cousins. J Mol Cell Cardiol 55:42–49. doi:10.1016/j.yjmcc.2012.07.015

    Article  CAS  Google Scholar 

  • Douban S, Brodsky MA, Whang DD, Whang R (1996) Significance of magnesium in congestive heart failure. Am Heart J 132(3):664–671

    Article  CAS  Google Scholar 

  • Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38

    Article  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

  • Gunter TE, Buntinas L, Sparagna GC, Gunter KK (1998) The Ca2 + transport mechanisms of mitochondria and Ca2 + uptake from physiological-type Ca2 + transients. Biochim Biophys Acta 1366(1–2):5–15

  • Harrington JL, Murphy E (2015) The mitochondrial calcium uniporter: mice can live and die without it. J Mol Cell Cardiol 78:46–53. doi:10.1016/j.yjmcc.2014.10.013

    Article  CAS  Google Scholar 

  • Haumann J, Dash RK, Stowe DF, Boelens AD, Beard DA, Camara AK (2010) Mitochondrial free [Ca2 +] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms. Biophys J 99(4):997–1006. doi:10.1016/j.bpj.2010.04.069

  • Huser J, Blatter LA, Sheu SS (2000) Mitochondrial calcium in heart cells: beat-to-beat oscillations or slow integration of cytosolic transients? J Bioenerg Biomembr 32(1):27–33

    Article  CAS  Google Scholar 

  • Kamer KJ, Mootha VK (2014) MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep 15(3):299–307. doi:10.1002/embr.201337946

    Article  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364. doi:10.1038/nature02246

    Article  CAS  Google Scholar 

  • Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH (2014) Role of magnesium in cardiovascular diseases. Cardiol Rev 22(4):182–192. doi:10.1097/CRD.0000000000000003

    Article  Google Scholar 

  • Kristian T, Pivovarova NB, Fiskum G, Andrews SB (2007) Calcium-induced precipitate formation in brain mitochondria: composition, calcium capacity, and retention. J Neurochem 102(4):1346–1356. doi:10.1111/j.1471-4159.2007.04626.x

    Article  CAS  Google Scholar 

  • Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, et al. (2015) The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep 12(1):15–22. doi:10.1016/j.celrep.2015.06.002

    Article  CAS  Google Scholar 

  • Levitsky DO, Takahashi M (2013) Interplay of Ca(2+) and Mg (2+) in sodium-calcium exchanger and in other Ca(2+)-binding proteins: magnesium, watchdog that blocks each turn if able. Adv Exp Med Biol 961:65–78. doi:10.1007/978-1-4614-4756-6_7

    Article  CAS  Google Scholar 

  • Lu X, Ginsburg KS, Kettlewell S, Bossuyt J, Smith GL, Bers DM (2013) Measuring local gradients of intramitochondrial [Ca(2+)] in cardiac myocytes during sarcoplasmic reticulum Ca(2+) release. Circ Res 112(3):424–431. doi:10.1161/CIRCRESAHA.111.300501

    Article  CAS  Google Scholar 

  • Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, Song J, et al. (2015) The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep 12(1):23–34. doi:10.1016/j.celrep.2015.06.017

    Article  CAS  Google Scholar 

  • Mallilankaraman K, Doonan P, Cardenas C, Chandramoorthy HC, Muller M, Miller R, et al. (2012) MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell 151(3):630–644. doi:10.1016/j.cell.2012.10.011

    Article  CAS  Google Scholar 

  • Marchi S, Pinton P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592(Pt 5):829–839. doi:10.1113/jphysiol.2013.268235

    Article  CAS  Google Scholar 

  • Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3–4):311–317. doi:10.1016/j.ceca.2005.06.011

    Article  CAS  Google Scholar 

  • O'Rourke B, Blatter LA (2009) Mitochondrial Ca2 + uptake: tortoise or hare? J Mol Cell Cardiol 46(6):767–774. doi:10.1016/j.yjmcc.2008.12.011

  • Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, et al. (2004) Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J Biol Chem 279(24):25234–25240. doi:10.1074/jbc.M401229200

    Article  CAS  Google Scholar 

  • Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, et al. (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472. doi:10.1038/ncb2868

    Article  CAS  Google Scholar 

  • Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D, Mantoan M, et al. (2014) MICU1 and MICU2 finely tune the mitochondrial Ca2 + uniporter by exerting opposite effects on MCU activity. Mol Cell 53(5):726–737. doi:10.1016/j.molcel.2014.01.013

  • Pradhan RK, Qi F, Beard DA, Dash RK (2011) Characterization of Mg2 + inhibition of mitochondrial Ca2 + uptake by a mechanistic model of mitochondrial Ca2 + uniporter. Biophys J 101(9):2071–2081. doi:10.1016/j.bpj.2011.09.029

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50(3):222–233. doi:10.1016/j.ceca.2011.04.007

    Article  CAS  Google Scholar 

  • Rhodes SS, Ropella KM, Audi SH, Camara AK, Kevin LG, Pagel PS, et al. (2003) Cross-bridge kinetics modeled from myoplasmic [Ca2 +] and LV pressure at 17 degrees C and after 37 degrees C and 17 degrees C ischemia. Am J Physiol Heart Circ Physiol 284(4):H1217–H1229. doi:10.1152/ajpheart.00816.2002

  • Sareen D, Darjatmoko SR, Albert DM, Polans AS (2007) Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol Pharmacol 72(6):1466–1475. doi:10.1124/mol.107.039040

    Article  CAS  Google Scholar 

  • Scaduto RC,J, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477. doi:10.1016/S0006-3495(99)77214-0

    Article  CAS  Google Scholar 

  • Sedova M, Dedkova EN, Blatter LA (2006) Integration of rapid cytosolic Ca2 + signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol 291(5):C840–C850. doi:10.1152/ajpcell.00619.2005

  • Seelig M (1989) Cardiovascular consequences of magnesium deficiency and loss: pathogenesis, prevalence and manifestations–magnesium and chloride loss in refractory potassium repletion. Am J Cardiol 63(14):4G–21G

    Article  CAS  Google Scholar 

  • Sparagna GC, Gunter KK, Sheu SS, Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270(46):27510–27515

    Article  CAS  Google Scholar 

  • Szabadkai G, Duchen MR (2008) Mitochondria: the hub of cellular Ca2 + signaling. Physiology (Bethesda) 23:84–94. doi:10.1152/physiol.00046.2007

  • Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 52(1):28–35. doi:10.1016/j.ceca.2012.03.003

    Article  CAS  Google Scholar 

  • Tewari SG, Camara AK, Stowe DF, Dash RK (2014) Computational analysis of Ca2 + dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2 + uptake. J Physiol 592(Pt 9):1917–1930. doi:10.1113/jphysiol.2013.268847

  • Thomas RS, Greenawalt JW (1968) Microincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J Cell Biol 39(1):55–76

    Article  CAS  Google Scholar 

  • Varadarajan SG, An J, Novalija E, Smart SC, Stowe DF (2001) Changes in [Na(+)](i), compartmental [Ca(2+)], and NADH with dysfunction after global ischemia in intact hearts. Am J Physiol Heart Circ Physiol 280(1):H280–H293

    CAS  Google Scholar 

  • Vasington FD, Murphy JV (1962) Ca2+ ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237:2670–2677

    CAS  Google Scholar 

  • Wei AC, Liu T, Winslow RL, O'Rourke B (2012) Dynamics of matrix-free Ca2 + in cardiac mitochondria: two components of Ca2 + uptake and role of phosphate buffering. J Gen Physiol 139(6):465–478. doi:10.1085/jgp.201210784

  • Wingrove DE, Gunter TE (1986) Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J Biol Chem 261(32):15166–15171

    CAS  Google Scholar 

  • Wu LN, Genge BR, Wuthier RE (2008) Analysis and molecular modeling of the formation, structure, and activity of the phosphatidylserine-calcium-phosphate complex associated with biomineralization. J Biol Chem 283(7):3827–3838. doi:10.1074/jbc.M707653200

    Article  CAS  Google Scholar 

  • Wu LN, Genge BR, Wuthier RE (2009) Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes. J Inorg Biochem 103(7):948–962. doi:10.1016/j.jinorgbio.2009.04.004

    Article  CAS  Google Scholar 

  • Wu Y, Rasmussen TP, Koval OM, Joiner ML, Hall DD, Chen B, et al. (2015) The mitochondrial uniporter controls fight or flight heart rate increases. Nat Commun 6:6081. doi:10.1038/ncomms7081

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grants R01-HL095122, P01-GM066730, and K99-HL121160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadou K. S. Camara.

Additional information

Christoph A. Blomeyer and Jason N. Bazil equally contributed to the work.

Electronic supplementary material

ESM 1

(DOCX 1622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blomeyer, C.A., Bazil, J.N., Stowe, D.F. et al. Mg2+ differentially regulates two modes of mitochondrial Ca2+ uptake in isolated cardiac mitochondria: implications for mitochondrial Ca2+ sequestration. J Bioenerg Biomembr 48, 175–188 (2016). https://doi.org/10.1007/s10863-016-9644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9644-1

Keywords

Navigation