Skip to main content
Log in

Chemical modifications of respiratory complex I for structural and functional studies

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Studies on chemical modifications of bacterial and mitochondrial complex I by synthetic chemical probes as well as endogenous chemicals have provided useful information on the structural and functional aspects of this enzyme. We herein reviewed recent studies that investigated chemical modifications of complex I by endogenous chemicals (e.g. Cys-S-nitrosation, Cys-S-glutathionylation, and Ser-O-phosphorylation) and synthetic reagents (e.g. Cys-SH modification by SH-reagents and the cross-linking of nearby subunits by bifunctional cross-linkers). We also reviewed recent photoaffinity labeling studies using complex I inhibitors, which can be recognized as “site-specific modification” by synthetic chemicals. In addition, we discussed the possibility of site-specific modification by various functional probes via ligand-directed tosylate (LDT) chemistry as a promising approach for unique biophysical studies on complex I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Andrews B, Carroll J, Ding S, Feanley IM, Walker JE (2014) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A 110(47):18934–9

    Article  Google Scholar 

  • Antos JM, McFarland JM, Lavarone AT, Francis MB (2009) Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J Am Chem Soc 131(17):6301–6308

    Article  CAS  Google Scholar 

  • Babot M, Labarbuta P, Birch A, Fuszard M. Botting GH, Wittig I, Heide H, Galkin A (2014) ND3, ND1 and 39 kDa subunits are more exposed in the deactive form of bovine mitochondrial complex I, Biochim. Biophys. Acta 1837 (6):929–939

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494(7438):443–448

    Article  CAS  Google Scholar 

  • Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins. J Biol Chem 279(46):47939–47591

    Article  CAS  Google Scholar 

  • Belogrudov G, Hatefi Y (1994) Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry 33(15):4571–4576

    Article  CAS  Google Scholar 

  • Bernardes GJL, Chalker JM, Errey JC, Davis BG (2008) Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J Am Chem Soc 130(15):5052–5053

    Article  CAS  Google Scholar 

  • Berrisford JM, Thompson CJ, Sazanov LA (2008) Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of complex I from Escherichia coli and Thermus thermophilus. Biochemistry 47(39):10262–10270

    Article  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  CAS  Google Scholar 

  • Cai K, Itoh Y, Khorane HG (2001) Mapping of contact sites in complex formation between transducing and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc Natl Acad Sci U S A 98(9):4877–4882

    Article  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria. J Biol Chem 278(38):36027–36031

    Article  CAS  Google Scholar 

  • Chen R, Fearnley IM, Peak-Chew SY, Walker JE (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 279(25):26036–26045

    Article  CAS  Google Scholar 

  • Chouchani ET, Hurd TR, Nadtochiy SM, Brookes PS, Fearnley IM, Lilley KS, Smith RAJ, Murphy MP (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430(1):49–59

    Article  CAS  Google Scholar 

  • Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RAJ, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759

    Article  CAS  Google Scholar 

  • Ciano M, Fuszard M, Heide H, Botting GH, Galkin A (2013) Conformation-specific crosslinking of mitochondrial complex I. FEBS Lett 587(7):867–872

    Article  CAS  Google Scholar 

  • Di Bernardo S, Yagi T (2001) Direct interaction between a membrane domain subunit and a connector subunit in the H+-translocating NADH-quinone oxidoreductase. FEBS Lett 508(3):385–388

    Article  Google Scholar 

  • Dorman G, Prestwich GD (2000) Using photolabile ligands in drug discovery and development. Trends Biotechnol 18(2):64–77

    Article  CAS  Google Scholar 

  • Dröse S, Brandt U, Wittig I (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844(8):1344–1354

    Article  Google Scholar 

  • Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I: A structural and evolutionary perspective. Biochim Biophys Acta 1817(10):1785–1795

    Article  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465(7297):441–445

    Article  CAS  Google Scholar 

  • Galkin A, Moncada S (2007) S-Nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 282(52):37448–37453

    Article  CAS  Google Scholar 

  • Galkin A, Meyer B, Wittig I, Karas M, Schägger H, Vinogradov A, Brandt U (2008) Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem 283(30):20907–20913

    Article  CAS  Google Scholar 

  • Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S (2009) Lack of oxygen deactivates mitochondrial complex I. J Biol Chem 284(52):36055–36061

    Article  CAS  Google Scholar 

  • Gallogy MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr, Opin. Pharmacol 7(4):381–391

    Google Scholar 

  • Gavrikova EV, Vinogradov AD (1999) Active-deactive state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling. FEBS Lett 455(1–2):36–40

    Article  CAS  Google Scholar 

  • Gondal JA, Anderson WM (1985) The molecular morphology of bovine heart mitochondrial NADH-ubiquinone reductase. Native disulfide-linked subunits and rotenone-induced conformational changes. J Biol Chem 260(23):12690–12694

    CAS  Google Scholar 

  • Gostimskaya IS, Cecchini G, Vinogradov AD (2006) Topography and chemical reactivity of the active-inactive transition-sensitive SH-group in the mitochondrial NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1757(9–10):21155–1161

    Google Scholar 

  • Grivennikova VG, Kapustin AN, Vinogradov AD (2001) Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. J Biol Chem 276(12):9038–9044

    Article  CAS  Google Scholar 

  • Hatanaka Y, Sadakane Y (2002) Photoaffinity labeling in drug discovery and developments: Chemical gateway for entering proteomic frontier. Curr Top Med Chem 2(3):271–288

    CAS  Google Scholar 

  • Hirst J (2010) Towards the molecular mechanism of respiratory complex I. Biochem J 425(2):327–339

    Article  CAS  Google Scholar 

  • Hirst J (2013) Mitochondrial complex I. Annu Rev Biochem 82:551–575

    Article  CAS  Google Scholar 

  • Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP (2007) Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis. J Biol Chem 282(30):22040–22051

    Article  CAS  Google Scholar 

  • Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys704 of the 75 kDa subunit. J Biol Chem 283(36):24801–24815

    Article  CAS  Google Scholar 

  • Kakutani N, Murai M, Sakiyama N, Miyoshi H (2010) Exploring the binding site of Δlac-acetogenin in bovine heart mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 49(23):4794–4803

    Article  CAS  Google Scholar 

  • Kao MC, Matsuno-Yagi A, Yagi T (2004) Subunit proximity in the H+-translocating NADH-quinone oxidoreductase probed by zero-length cross-linking. Biochemistry 43(12):3750–3755

    Article  CAS  Google Scholar 

  • Kmita K, Zickermann V (2013) Accessory subunits of mitochondrial complex I. Biochem Soc Trans 41(5):1272–1279

    Article  CAS  Google Scholar 

  • Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, Mccomb ME, Pimentel D, Bachschmid MM (2012) Cardiovascular redox and ox stress proteomics, Antioxid. Redox Signal 17(11):1528–1559

    CAS  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain, J. J Neurochem 80(5):780–787

    Article  CAS  Google Scholar 

  • Loewen MC, Klein-Seetharaman J, Getmanova EV, Reeves PJ, Schwalbe H, Khorane HG (2001) Solution 19 F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin. Proc Natl Acad Sci U S A 98(9):4888–4892

    Article  CAS  Google Scholar 

  • Mailloux RJ, Seifert EL, Bouillaud F, Auger C, Collins S, Harper M-E (2011) Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 286(24):21865–21875

    Article  CAS  Google Scholar 

  • Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cystein oxidation reactions. Redox Biol 2:123–139

    Article  Google Scholar 

  • Mamedova AA, Holt PJ, Carroll J, Sazanov LA (2004) Substrate-induced conformational change in bacterial complex I. J Biol Chem 279(22):23830–23836

    Article  CAS  Google Scholar 

  • Masuya T, Murai M, Ifuku K, Morisaka H, Miyoshi H (2014) Site-specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry. Biochemistry 53(14):2307–2317

    Article  CAS  Google Scholar 

  • McFarland JM, Francis MB (2005) Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J Am Chem Soc 127(39):13490–13491

    Article  CAS  Google Scholar 

  • Minakami S, Schindler FJ, Estabrook RW (1964a) Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and respiratory chain: I effect of sulfhydryl inhibitors and phospholipase. J Biol Chem 239:2042–2048

    CAS  Google Scholar 

  • Minakami S, Schindler FJ, Estabrook RW (1964b) Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and the respiratory chain: II an initial lag in the oxidation of reduced diphosphopyridine nucleotide J. Biol Chem 239:2049–2054

    CAS  Google Scholar 

  • Morais VA, Haddad D, Craessaerts K, De Bock PJ, Swerts J, Vilain S, Aerts L, Overbergh L, Grünewald A, Seibler P, Klein C, Gevaert K, Verstreken P, De Strooper B (2014) PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344(6180):203–207

    Article  CAS  Google Scholar 

  • Murai M, Ishihara A, Nishioka T, Yagi T, Miyoshi H (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I. Biochemistry 46(21):6409–6416

    Article  CAS  Google Scholar 

  • Murai M, Sekiguchi K, Nishioka T, Miyoshi H (2009) Characterization of the inhibitor binding site in mitochondrial NADH-ubiquinone oxidoreductase by photoaffinity labeling using a quinazoline-type inhibitor. Biochemistry 48(4):688–698

    Article  CAS  Google Scholar 

  • Murai M, Mashimo Y, Hirst J, Miyoshi H (2011) Exploring interactions between the 49 kDa and ND1 subunits in mitochondrial NADH-ubiquinone oxidoreductase (complex I) by photoaffinity labeling. Biochemistry 50(32):6901–6908

    Article  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  Google Scholar 

  • Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications, Antioxid. Redox Signal 16(6):477–495

    Article  Google Scholar 

  • Murray CI, Kane LA, Uhrigshardt H, Wang SB, Van Eyk JE (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol. Cell Prot. 10 (3): M110.004721.

  • Nakanishi S, Abe M, Yamamoto S, Murai M, Miyoshi H (2011) Bis-THF motif of acetogenin binds to the third matrix-side loop of ND1 subunit in mitochondrial NADH-ubiquinone oxidoreductase. Biochim Biophys Acta 1807(9):1170–1176

    Article  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Cocco T, Speranza F, Scacco SC, Technikova-Dobrova Z (1996) The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379(3):299–301

    Article  CAS  Google Scholar 

  • Pawson T (2007) Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol 19(2):112–116

    Article  CAS  Google Scholar 

  • Pohl T, Uhlmann M, Kaufenstein M, Friedrich T (2007) Lambda red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry 46(37):10694–10702

    Article  CAS  Google Scholar 

  • Pohl T, Spatzal T, Aksoyoglu M, Rostas AM, Lay H, Glessner U, Boudon C, Hellwig P, Weber S, Friedrich T (2010) Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1797(12):1894–1900

    Article  CAS  Google Scholar 

  • Prime TA, Blaikie FH, Evans C, Nadtochiy SM, James AM, Dahm CC, Vitturi DA, Patel RP, Hiley CR, Abakumova I, Requejo R, Chouchani ET, Hurd TR, Garvey JF, Taylor CT, Brookes PS, Smith RAJ, Murphy MP (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci U S A 106(26):10764–10769

    Article  CAS  Google Scholar 

  • Pryde KR, Hirst J (2011) Superoxide is produced by the reduced flavin in mitochondrial complex I. J Biol Chem 286(20):18056–18065

    Article  CAS  Google Scholar 

  • Robert PG, Hirst J (2012) The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter. J Biol Chem 287(41):34743–34751

    Article  Google Scholar 

  • Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301(5):H1723–H1741

    CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311(5766):1430–1436

    Article  CAS  Google Scholar 

  • Schilling B, Aggeler R, Schulenberg B, Murray J, Row RH, Capaldi RA, Gibson BW (2005) Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I. FEBS Lett 579(11):2485–2490

    Article  CAS  Google Scholar 

  • Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127(11):3718–3723

    Article  CAS  Google Scholar 

  • Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278(29):27251–27255

    Article  CAS  Google Scholar 

  • Sekiguchi K, Murai M, Miyoshi H (2009) Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochim Biophys Acta 1787(9):1106–1111

    Article  CAS  Google Scholar 

  • Shiraishi Y, Murai M, Sakiyama N, Ifuku K, Miyoshi H (2012) Fenpyroximate binds to the interface between PSST and 49 kDa subunits in mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 51(9):1953–1963

    Article  CAS  Google Scholar 

  • Smith RAJ, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100(9):5407–5412

    Article  CAS  Google Scholar 

  • Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy, Nat. Chem Biol 7(11):876–884

    CAS  Google Scholar 

  • Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101(11):1155–1163

    Article  CAS  Google Scholar 

  • Takaoka Y, Ojida A, Hamachi I (2013) Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew Chem Int Ed 52(15):4088–4106

    Article  CAS  Google Scholar 

  • Taylor ER, Hurrell F, Shannon RJ, Lin T-K, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278(22):19603–19610

    Article  CAS  Google Scholar 

  • Tocilescu MA, Zickermann V, Zwicker K, Brandt U (2010) Quinone binding and reduction by respiratory complex I, Biochim. Biophys. Acta 1797 (12):18831890.

  • Toda N, Asano S, Barbas CF III (2014) Rapid, stable, chemoselective labeling of thiols with Julia-Kocienski-like reagents: a serum-stable alternative to maleimide-based protein conjugation. Angew Chem Int Ed 52(48):12592–12596

    Article  Google Scholar 

  • Tsukiji S, Miyagawa M, Takaoka Y, Tamura T, Hamachi I (2009) Ligand-directed tosyl chemistry for protein labeling in vivo, Nat. Chem Biol 5(5):341–343

    CAS  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  CAS  Google Scholar 

  • Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125(11):3192–3193

    Article  CAS  Google Scholar 

  • Watanabe R, Tabata KV, Iino R, Ueno H, Iwamoto M, Oiki S, Noji H (2013) Biased Brownian stepping rotation of FoF1-ATP synthase driven by proton motive force. Nat Comm 4:1631

    Article  Google Scholar 

  • Yamaguchi M, Hatefi Y (1993) Mitochondrial NADH:ubiquinone oxidoreductase (complex I): proximity of the subunits of the flavoprotein and the iron − sulfur protein subcomplexes. Biochemistry 32(8):1935–1939

    Article  CAS  Google Scholar 

  • Yasuda R, Masaike T, Adachi K, Noji H, Itoh H, Kinosita K Jr (2003) The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 100(16):9314–9318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (Grant 23380064 to H. M.) and for Young Scientists (Grant 23780116 to M. M.) from the Japan Society for the Promotion of Science.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Miyoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murai, M., Miyoshi, H. Chemical modifications of respiratory complex I for structural and functional studies. J Bioenerg Biomembr 46, 313–321 (2014). https://doi.org/10.1007/s10863-014-9562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9562-z

Keywords

Navigation