Skip to main content

Advertisement

Log in

Targeting proteomics to investigate metastasis-associated mitochondrial proteins

  • MINI-REVIEW
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondria are essential organelles in eukaryotic cells and are responsible for regulating energy metabolism, ROS production, and cell survival. Recently, various cellular pathogeneses, including tumorigenesis and metastasis, have been reported to be associated with mitochondrial homeostasis. Consequently, exploiting the correlation between dysfunctional mitochondria and tumor progression has been implicated in the understanding of tumorigenesis, tumor metastasis, and chemoresistance, along with novel strategies to develop cancer therapeutics. To comprehensively understand the role of the mitochondria in cancer metastasis, it is necessary to resolve thousands of mitochondrial proteins and their post-translational modifications with high-throughput global assessments. We introduce mitochondrial proteomic strategies in this review and a discussion on their recent findings related to cancer metastasis. Additionally, the mitochondrial respiratory chain is believed to be a major site for ROS production, and elevated ROS is likely a key source to trigger dysfunctional mitochondria and impaired mitochondrial metabolism that subsequently contribute to the development of cancer progression. Equipment-based metabolomic analysis now allows the monitoring of disease progression and diagnosis. These newly emerging techniques, including proteomics, redox-proteomics, and metabolomics, are described in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreyev AY et al (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    Article  CAS  Google Scholar 

  • Blagoev B et al (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21:315–318

    Article  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  Google Scholar 

  • Calcinotto A et al. (2012) Modulation of Microenvironment Acidity Reverses Anergy in Human and Murine Tumor-Infiltrating T Lymphocytes. Cancer Res 72:2746–2756

    Google Scholar 

  • Calvo SE, Mootha VK (2010) The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 11:25–44

    Article  CAS  Google Scholar 

  • Chan HL et al (2005) Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics 5:2908–2926

    Article  CAS  Google Scholar 

  • Chan HL et al (2006) Proteomic analysis of UVC irradiation-induced damage of plasma proteins: serum amyloid P component as a major target of photolysis. FEBS Lett 580:3229–3236

    Article  CAS  Google Scholar 

  • Chan HL et al (2012) Proteomic analysis of redox-dependent changes using cysteine-labeling 2D DIGE. Methods Mol Biol 854:113–128

    Article  CAS  Google Scholar 

  • Chen EI et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486

    Article  CAS  Google Scholar 

  • Chen YW et al (2011) Mitochondrial proteomics analysis of tumorigenic and metastatic breast cancer markers. Funct Integr Genomics 11:225–239

    Article  CAS  Google Scholar 

  • Chou HC et al (2012) Proteomic and redox-proteomic analysis of berberine-induced cytotoxicity in breast cancer cells. J Proteomics 75:3158–3176

    Article  CAS  Google Scholar 

  • Da Cruz S et al (2005) Building the mitochondrial proteome. Exp Rev Proteomics 2:541–551

    Article  Google Scholar 

  • DeSouza L et al (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4:377–386

    Article  CAS  Google Scholar 

  • Dunkley TP et al (2004) The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochem Soc Trans 32:520–523

    Article  CAS  Google Scholar 

  • Evans C et al. (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem. doi:10.1007/s00216-012-5918-6

  • Fenn JB et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  • Fulda S et al (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  Google Scholar 

  • Gogvadze V et al (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    Article  CAS  Google Scholar 

  • Gogvadze V et al (2009) Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19:57–66

    Article  CAS  Google Scholar 

  • Goh J et al (2011) Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11:191

    Article  CAS  Google Scholar 

  • Goswami PC (2009) Mutant mitochondria and cancer cell metastasis: quest for a mechanism. Cancer Biol Ther 8:1386–1388

    Article  CAS  Google Scholar 

  • Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94:695–698

    Article  CAS  Google Scholar 

  • Gygi SP et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  • Han J et al (2008) Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4:128–140

    Article  CAS  Google Scholar 

  • Herrmann PC, Herrmann EC (2012) Mitochondrial proteome: toward the detection and profiling of disease associated alterations. Methods Mol Biol 823:265–277

    Article  CAS  Google Scholar 

  • Herrmann PC et al (2003) Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics 3:1801–1810

    Article  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  • Karas M et al (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12

    Article  CAS  Google Scholar 

  • King A et al (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25:4675–4682

    Article  CAS  Google Scholar 

  • Koulman A et al (2009) High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid Commun Mass Spectrom 23:1411–1418

    Article  CAS  Google Scholar 

  • Kulawiec M et al (2009) Cancer cell mitochondria confer apoptosis resistance and promote metastasis. Cancer Biol Ther 8:1378–1385

    CAS  Google Scholar 

  • Lai TC et al (2010) Secretomic and Proteomic Analysis of Potential Breast Cancer Markers by Two-Dimensional Differential Gel Electrophoresis. J Proteome Res 9:1302–1322

    Article  CAS  Google Scholar 

  • Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344

    Article  CAS  Google Scholar 

  • Li K et al (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399

    Article  CAS  Google Scholar 

  • Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458

    Article  CAS  Google Scholar 

  • Nagrath D et al (2011) Metabolomics for mitochondrial and cancer studies. Biochim Biophys Acta 1807:650–663

    Article  CAS  Google Scholar 

  • Paweletz CP et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  CAS  Google Scholar 

  • Pelicano H et al (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  Google Scholar 

  • Pimienta G et al (2009) SILAC for global phosphoproteomic analysis. Methods Mol Biol 527:107–116, x

    Article  CAS  Google Scholar 

  • Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696

    Article  CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Google Scholar 

  • Seifert EL et al (2010) Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria. PLoS One 5:e9834

    Article  Google Scholar 

  • Shaham O et al (2010) A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A 107:1571–1575

    Article  CAS  Google Scholar 

  • Simonnet H et al (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768

    Article  CAS  Google Scholar 

  • Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  CAS  Google Scholar 

  • Tu YF et al (2011) Mitochondria of highly metastatic breast cancer cell line MDA-MB-231 exhibits increased autophagic properties. Biochim Biophys Acta 1807:1125–1132

    Article  CAS  Google Scholar 

  • Verma M et al (2003) Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 3:789–795

    Article  CAS  Google Scholar 

  • Wang GQ et al (2001) A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 276:34307–34317

    Article  CAS  Google Scholar 

  • Warburg OU (1926) Translated: The metabolism of tumors. London: Arnold Constable. Springer, Berlin

    Google Scholar 

  • Weckwerth W (2010) Metabolomics: an integral technique in systems biology. Bioanalysis 2:829–836

    Article  CAS  Google Scholar 

  • Weigelt B et al (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  Google Scholar 

  • Whitehouse CM et al (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  CAS  Google Scholar 

  • Wu CL et al. (2012) Proteomic analysis of UVB-induced protein expression- and redox-dependent changes in skin fibroblasts using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis. J Proteomics 75:1991–2014

    Google Scholar 

  • Zhang L et al (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992

    Article  CAS  Google Scholar 

  • Zhang A et al (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Lin Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, HC., Chan, HL. Targeting proteomics to investigate metastasis-associated mitochondrial proteins. J Bioenerg Biomembr 44, 629–634 (2012). https://doi.org/10.1007/s10863-012-9466-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9466-8

Keywords

Navigation